Large scale ozone losses

Apr 27, 2005

Scientists from the EU SCOUT-O3 Integrated Project, which is co-ordinated by the University of Cambridge's Chemistry Department, have been studying the links between stratospheric ozone and climate change in the Arctic since May 2004. This recent finding was announced during a meeting of the European Geophysical Union in Vienna on Monday, 25 April.
Overall temperatures in the ozone layer were the lowest for 50 years and were consistently low for over three months. From late November to late February, large areas of polar stratospheric clouds (PSCs) - clouds in the ozone layer- were present over the Arctic region at altitudes between 14 and 26 km.

This is the largest in the 50 year record, and especially in the last 20 years, the period when the ozone-depleting compounds have been high.

The chemical balance in the stratosphere is changed significantly by the presence of these clouds, altering the breakdown products from manmade CFCs (chlorofluorocarbons) so that rapid chemical ozone destruction can occur in the presence of sunlight. The cold conditions affected the distribution of nitrogen oxides, allowing ozone loss to continue longer than usual.

The European scientists reported the first signs of ozone loss in January 2005. As sunlight returned to northern latitudes the rate of ozone depletion increased and rapid destruction of ozone occurred throughout February and March. In the altitude range where the ozone layer usually reaches its maximum concentration, more than half of the ozone was lost. "Overall about 30% of the ozone layer was destroyed," said Dr Markus Rex from the Alfred Wegener Institute in Potsdam, Germany. "This largely prevented the normal seasonal increase of the thickness of the ozone layer during winter and led to a thinner ozone layer in Arctic spring compared to warmer years."

The overall degree of ozone loss this year was of similar magnitude to the record loss that was observed in the Arctic during winter 1999/2000. During late March the Arctic air masses drifted over central Europe and contributed to individual days of significantly increased UV-B radiation and sunburn risk in parts of Europe. The affected region reached as far south as northern Italy.

Emissions of ozone depleting substances are now largely banned worldwide by the Montreal protocol. As a first success of this milestone of international cooperation in environmental policies the atmospheric concentrations of CFCs started to decrease. But the atmospheric lifetime of these compounds is extremely long and the concentrations will remain at dangerously high levels for another half century.

Over the next few decades the fate of the Arctic ozone layer will mainly depend on the evolution of atmospheric temperatures at the altitude of the ozone layer. Over the past forty years the conditions there have become significantly colder.

"The cooling was particularly pronounced for the cold Arctic winters. Unfortunately these are the winters that result in large ozone losses. In 2005 the average extent of conditions cold enough for the existence of polar stratospheric clouds was four times larger than it has ever been in the sixties or early seventies of the past century," said Dr Rex.

This continuous cooling trend is qualitatively consistent with what would be expected as a result of increasing concentrations of greenhouse gases in the atmosphere. However the coupling processes between climate change and temperatures in the polar ozone layer are complicated by feedback process that are currently not sufficiently understood to make reliable predictions for the future.

"Our aim is to improve the predictions of future ozone and other stratospheric changes as well as the associated UV and climate impact," said Dr Neil Harris from the University of Cambridge, one of the coordinators of the project.

"Within SCOUT-O3 we have followed the meteorological conditions in the Arctic closely and a suite of atmospheric observations and model calculations was triggered on a very short notice. The Arctic ozonesonde station network started a campaign of coordinated measurements to monitor the chemical ozone destruction. ESA carried out additional measurements of the chemical composition of air in the Arctic ozone layer with the ENVISAT research satellite. The high flying research aircraft Geophysica made a deployment deep into Arctic air masses resulting in additional in-situ observations of key species."

Preliminary results from all these studies are being presented at the European Geophysical Union meeting in Vienna this week.

Source: Cambridge University

Explore further: Astrobiology students explore alien environment on Earth

Related Stories

Ozone layer faces record 40 pct loss over Arctic

Apr 05, 2011

(AP) -- The protective ozone layer in the Arctic that keeps out the sun's most damaging rays - ultraviolet radiation - has thinned about 40 percent this winter, a record drop, the U.N. weather agency said ...

Arctic marine organisms capture CO2

Oct 14, 2014

Arctic marine organisms act as a reservoir for CO2, according to research published in the international journal Geophysical Research Letters.

Study finds unprecedented Arctic ozone loss

Oct 02, 2011

(PhysOrg.com) -- A NASA-led study has documented an unprecedented depletion of Earth's protective ozone layer above the Arctic last winter and spring caused by an unusually prolonged period of extremely low ...

Arctic on the verge of record ozone loss

Mar 14, 2011

Unusually low temperatures in the Arctic ozone layer have recently initiated massive ozone depletion. The Arctic appears to be heading for a record loss of this trace gas that protects the Earth's surface against ultraviolet ...

Recommended for you

Ceres bright spots sharpen but questions remain

2 hours ago

The latest views of Ceres' enigmatic white spots are sharper and clearer, but it's obvious that Dawn will have to descend much lower before we'll see crucial details hidden in this overexposed splatter of ...

What are extrasolar planets?

2 hours ago

For countless generations, human beings have looked out at the night sky and wondered if they were alone in the universe. With the discovery of other planets in our solar system, the true extent of the Milky ...

Rosetta's view of a comet's "great divide"

2 hours ago

The latest image to be revealed of comet 67P/Churyumov-Gerasimenko comes from October 27, 2014, before the Philae lander even departed for its surface. Above we get a view of a dramatically-shadowed cliff ...

How long will our spacecraft survive?

3 hours ago

There are many hazards out there, eager to disrupt and dismantle the mighty machines we send out into space. How long can they survive to perform their important missions?

Why roundworms are ideal for space studies

3 hours ago

Humans have long been fascinated by the cosmos. Ancient cave paintings show that we've been thinking about space for much of the history of our species. The popularity of recent sci-fi movies suggest that ...

A curious family of giant exoplanets

3 hours ago

There are 565 exoplanets currently known that are as massive as Jupiter or bigger, about one third of the total known, confirmed exoplanet population. About one quarter of the massive population orbits very ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.