Aging in irradiated materials: First predictive model of the microstructure of irradiated iron

Jan 19, 2005

Researchers from the CEA's Nuclear Energy Division have, for the first time, been able to make a quantitative prediction of the evolution of radiation-induced defects in a structural material. The results obtained for iron, using multi-scale simulation techniques based on the atomic scale, will help provide greater insight into material aging phenomena in existing nuclear power plants and may be applied to nuclear systems of the future. They are to be published in the Nature Materials journal on January 4, 2005.

The evolution kinetics of radiation-induced defects in a material has a direct impact on changes in its microstructure and consequently on its mechanical properties. This makes the quantitative prediction of this kinetics and the phenomena governing it a major challenge for the nuclear industry.

This challenge can now be taken up by intercoupling computer simulation techniques operating on different scales. This is what is meant by multi-scale simulation; the numerical results obtained on one time and space scale were taken and used as input data for modeling on the next higher scale:

- first of all, ab initio computer simulations rooted in quantum mechanics described the structure and migration of defects and defect clusters. These simulations, which call for considerable computing resources, were performed by drawing intensively on the capabilities of the CCRT (research and technology computing center) set up on the CEA's Bruyères-le-Châtel site.

- the second stage consisted in taking these elementary properties and reconstructing, on the basis of a kinetic model , the evolution of defects and their effects on the macroscopic properties of an irradiated iron sample one micron (a thousandth of a millimeter) in size, over a period of about one hour.

The simulations were compared with indirect experimental measurements . The excellent agreement obtained demonstrates the realism of this multi-scale model, which highlights the role played by the hitherto unsuspected migration of small interstitial and vacancy clusters. They challenge the interpretation of several earlier experiments and simulations and open the way for the quantitative simulation of more complex irradiated materials such as industrial steels. They will be used in interpreting the mechanical behavior of the ferritic steels used as structural materials in existing nuclear fission plants, as well as those proposed for future fusion plants.

Irradiation defects and the structural changes induced in materials

Provided that enough energy is transmitted, bombarding materials with high-energy particles can displace atoms within the crystal lattice via a ballistic collision phenomenon. As they are struck, the atoms can be displaced by several interatomic distances before stopping in the interstitial position, leaving behind them gaps known as vacancies. These elementary defects – interstitials and vacancies – are mobile. They can migrate in the material and gather into clusters that grow to form a defect microstructure. It is this microstructure that will affect certain properties of the material – particularly its mechanical properties – by interacting, for example, with dislocations.

Reference:
Nature Materials 4, 68–74 (2005)
Multiscale modelling of defect kinetics in irradiated iron
CHU-CHUN FU, JACQUES DALLA TORRE, FRANÇOIS WILLAIME, JEAN-LOUIS BOCQUET and ALAIN BARBU
Service de Recherches de Métallurgie Physique, CEA/Saclay, 91191 Gif-sur-Yvette, France

Source: Commissariat a l'Energie Atomique (CEA)

Explore further: Large Hadron Collider resumes collisions after upgrade

Related Stories

Two-dimensional material seems to disappear, but doesn't

5 hours ago

(Phys.org)—When exposed to air, a luminescent 2D material called molybdenum telluride (MoTe2) appears to decompose within a couple days, losing its optical contrast and becoming virtually transparent. But when s ...

Defects in atomically thin semiconductor emit single photons

May 04, 2015

Researchers at the University of Rochester have shown that defects on an atomically thin semiconductor can produce light-emitting quantum dots. The quantum dots serve as a source of single photons and could be useful for ...

Desirable defects

Apr 30, 2015

Introducing flaws into liquid crystals by inserting microspheres and then controlling them with electrical fields: that, in a nutshell, is the rationale behind a method that could be exploited for a new generation of advanced ...

Recommended for you

Artificial muscles created from gold-plated onion cells

6 hours ago

Just one well-placed slice into a particularly pungent onion can send even the most seasoned chef running for a box of tissues. Now, this humble root vegetable is proving its strength outside the culinary ...

Image: Into the depths of the electromagnetic spectrum

7 hours ago

It can be difficult in our everyday lives to appreciate the extraordinary range of wavelengths in the electromagnetic spectrum. Electromagnetic radiation—from radio waves to visible light to x-rays—travels ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.