Poseidon Design Systems Introduces ESL Tools That Analyze, Optimize and Accelerate Processor-Based Designs

August 23, 2004

Triton Tool Suite Enables Designers to Trade off Performance, Power and Cost for SoCs, Platform ASICs, Structured Arrays and FPGAs

Poseidon Design Systems, Inc. today announced an Electronic System Level (ESL) tool suite - Triton Tuner(TM) and Triton Builder(TM) - that automates the process of optimizing and substantially accelerating processor-based designs. Based on a SystemC software and hardware co-simulation environment, transactional-level modeling (TLM) technology, and Poseidon's innovative HW/SW partitioning technology, the Triton tool suite enables SoC designers to co-simulate hardware and software at the architectural level, then tune and accelerate the embedded system for optimal performance, power and cost.

Triton Tuner is a simulation and analysis environment based on SystemC that analyzes the performance of an embedded system, including software performance (using performance counters, code profiling, and bottleneck analysis) and hardware performance (checking memory bandwidth, pipeline stalls, and cache miss-hits). It helps designers fine-tune a system architecture by determining the optimal HW/SW partition for a given end-use application, and by generating more efficient code based on the new partition.

Key Functions of Triton Tuner

-- Increases system performance by creating an efficient memory hierarchy

-- Optimizes memory hierarchy to create designs with lower power dissipation

-- Tunes software algorithms to run faster with reduced execution cycle

-- Identifies hot spots in algorithms through detailed profiling and reduces power by optimizing critical code

-- Identifies and eliminates bottlenecks between the hardware and the software

Triton Builder is a synthesis tool that automatically generates algorithm-specific hardware accelerator blocks in RTL. These new blocks offload the math-intensive algorithms from the host processor, as determined by Tuner's new partitioning. Besides accelerating the processing performance for a given algorithm, Builder creates highly efficient communication interfaces to get the data into and out of the custom accelerator hardware.

Key Functions of Triton Builder

-- Profiles application to identify candidates for hardware implementation

-- Synthesizes application-specific hardware accelerators directly from standard ANSI C

-- Generates efficient RTL for new hardware accelerators in either Verilog or VHDL

-- Explores multiple accelerator communication templates to meet system requirements

-- Complements Triton Tuner as an integrated environment to verify the accelerated system

-- Automatically generates test benches, drivers, and modified ANSI C application code

"Simply relying on Moore's Law to provide the additional processing power needed to accommodate the math-intensive algorithms can only lead to untenable architectural and economic efficiencies. Poseidon's Triton tool suite reveals the hidden inefficiencies in any processor-based design, and automates the optimization and acceleration process. In so doing, these ESL tools pave the way for convergence system designers to fulfill the seemingly insatiable demand for higher performance, lower power, and lower development costs," said Ravi Janak, CEO & President of Poseidon Design Systems. "As the inevitable convergence of video, audio and data communication draws near in both the enterprise and consumer markets, the need to create more efficient systems becomes paramount," said Farzad Zarrinfar, vice president of worldwide sales and marketing at Poseidon Design Systems.

Benchmark

Poseidon has implemented a wavelet encoder for a JPEG 2000 application to demonstrate the degree to which the Triton tool suite can effectively accelerate a system. Beginning with a design available from the public domain, we used Triton Tuner to determine the number of execution cycles needed to process a given image - 81.13 million cycles. By performing an analysis of the system with Tuner, we were able to identify where and how to optimize the code. We used Triton Builder tool to partition the design, to generate RTL code for the selected hardware accelerator blocks, and to automatically generate the necessary drivers, test benches and transactional models. Finally, using Tuner once again, we performed functional and performance verification before implementing the accelerated design on a Xilinx(R) Virtex-II(TM) FPGA. The design employs a MicroBlaze(TM) processor supported by instruction and data cache, several peripheral cores, and DDR-DRAM for main memory. The total optimization and acceleration enabled us to achieve a 23X reduction in execution cycles - or 3.54 million cycles.

"Our customers are constantly pushing the performance limits," said Steve Lass, Director of Software Product Marketing for Xilinx. "Today's real-time computing applications require smarter designs with better partitioning, and better use of hardware resources to off-load embedded processors. By pinpointing the bottlenecks in a design, then automating the path to more efficient silicon, system level design tools like those from Poseidon can help our users optimize their designs to achieve the best performance/area tradeoffs."

Poseidon Design Systems, Inc.

Explore further: Heliophysicist waits nearly 10 years for Pluto flyby

Related Stories

Heliophysicist waits nearly 10 years for Pluto flyby

July 8, 2015

When NASA's New Horizons mission to Pluto flies past the distant, icy world on July 14, NASA heliophysicist Nikolaos Paschalidis will be one happy man: he created a mission-enabling technology that will help uncover details ...

TU Delft launches Delfi-n3Xt satellite

November 22, 2013

On the morning of the 21st of November, the Delfi-n3Xt was launched from a base in Yasny, Russia. At 9.47, Mission Control in Delft made its first successful contact with the satellite. For almost five years now, students ...

UC San Diego launches new research computing program

June 11, 2013

The University of California, San Diego has deployed a new high-performance research computing system called the Triton Shared Computing Cluster, or TSCC, serving researchers at UC San Diego and any of the other UC campuses ...

SDSC supercharges its 'Data Oasis' storage system

June 6, 2012

The San Diego Supercomputer Center (SDSC) at the University of California, San Diego has completed the deployment of its Lustre-based Data Oasis parallel file system, with four petabytes (PB) of capacity and 100 gigabytes ...

Triton resource helps 'track' how kinesin molecules move

December 7, 2011

Researchers at UC San Diego’s Department of Chemistry and Biochemistry, in collaboration with several universities in the U.S., United Kingdom, and Poland, have developed a new picture of how kinesin molecules move along ...

Recommended for you

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

Exoplanets 20/20: Looking back to the future

July 31, 2015

Geoff Marcy remembers the hair standing up on the back of his neck. Paul Butler remembers being dead tired. The two men had just made history: the first confirmation of a planet orbiting another star.

Earth flyby of 'space peanut' captured in new video

July 31, 2015

NASA scientists have used two giant, Earth-based radio telescopes to bounce radar signals off a passing asteroid and produce images of the peanut-shaped body as it approached close to Earth this past weekend.

Binary star system precisely timed with pulsar's gamma-rays

July 31, 2015

Pulsars are rapidly rotating compact remnants born in the explosions of massive stars. They can be observed through their lighthouse-like beams of radio waves and gamma-rays. Scientists at the Max Planck Institute for Gravitational ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.