Looking deeper into graphene using rainbow scattering

Graphene is a two-dimensional wonder material that has been suggested for a wide range of applications in energy, technology, construction, and more since it was first isolated from graphite in 2004.

Uniformity: The secret of better fusion ignition

One of the ways to achieve thermonuclear fusion is through a controlled reaction between two light variants of hydrogen, called deuterium and tritium. Mauro Temporal, from the École Normale Supérieure Cachan, in France, ...

A better starting point for exploring entanglement

Quantum entanglement is perhaps one of the most intriguing phenomena known to physics. It describes how the fates of multiple particles can become entwined, even when separated by vast distances. Importantly, the probability ...

Colliding molecules and antiparticles

Antiparticles—subatomic particles that have exactly opposite properties to those that make up everyday matter—may seem like a concept out of science fiction, but they are real, and the study of matter-antimatter interactions ...

Quantifying how much quantum information can be eavesdropped

Summary The most basic type of quantum information processing is quantum entanglement. In a new study published in EPJ B, Zhaonan Zhang from Shaanxi Normal University, Xi'an, China, and colleagues have provided a much finer ...

The power of light-matter coupling

A theoretical study shows that strong ties between light and organic matter at the nanoscale open the door to modifying these coupled systems' optical, electronic or chemical properties.

Doubly-excited electrons reach new energy states

Positrons are short-lived subatomic particle with the same mass as electrons and a positive charge. They are used in medicine, e.g. in positron emission tomography (PET), a diagnostic imaging method for metabolic disorders. ...

page 3 from 11