New technique opens up advanced solar cells

In a photovoltaic cell, light generates opposite charges in the active layer. The charges must then be separated as quickly as possible to keep them from recombining. Positive charges are driven by a built-in electric field ...

Ultrashort light pulses for fast 'lightwave' computers

Extremely short, configurable "femtosecond" pulses of light demonstrated by an international team could lead to future computers that run up to 100,000 times faster than today's electronics.

Light-controlled reactions at the nanoscale

Controlling strong electromagnetic fields on nanoparticles is the key to triggering targeted molecular reactions on their surfaces. Such control over strong fields is achieved via laser light. Although laser-induced formation ...

Electron slow motion: Ion physics on the femtosecond scale

How do different materials react to the impact of ions? This is a question that plays an important role in many areas of research—for example, in nuclear fusion research, when the walls of the fusion reactor are bombarded ...

New insight into an intriguing state of magnetism

(Phys.org)—Magnonics is an exciting extension of spintronics, promising novel ways of computing and storing magnetic data. What determines a material's magnetic state is how electron spins are arranged (not everyday spin, ...

page 3 from 11