Using quantum technology to constrain new particles

Yet-to-be discovered axions and axion-like particles may be the key to explaining some of the deepest puzzles of our universe, such as dark matter and charge-parity violation in strong interactions. Several recent theories ...

Researchers measure rare particle decay with high precision

At CERN's Large Hadron Collider (LHC), studies of rare processes allow scientists to infer the presence of heavy particles, including undiscovered particles, that cannot be directly produced. Such particles are widely anticipated ...

Searching for matter–antimatter asymmetry with the Higgs boson

Symmetries make the world go round, but so do asymmetries. A case in point is an asymmetry known as charge–parity (CP) asymmetry, which is required to explain why matter vastly outnumbers antimatter in the present-day universe ...

The standard model of particle physics may be broken, expert says

As a physicist working at the Large Hadron Collider (LHC) at Cern, one of the most frequent questions I am asked is "When are you going to find something?" Resisting the temptation to sarcastically reply "Aside from the Higgs ...

Researchers test key neutrino model at the Large Hadron Collider

The CMS collaboration at the Large Hadron Collider (LHC) has carried out a new test on a model that was developed to explain the tiny mass of neutrinos, electrically neutral particles that change type as they travel through ...

page 20 from 40