Shrinking qubits for quantum computing with atom-thin materials

For quantum computers to surpass their classical counterparts in speed and capacity, their qubits—which are superconducting circuits that can exist in an infinite combination of binary states—need to be on the same wavelength. ...

Researchers propose a simpler design for quantum computers

Today's quantum computers are complicated to build, difficult to scale up, and require temperatures colder than interstellar space to operate. These challenges have led researchers to explore the possibility of building quantum ...

ESR-STM on single molecules and molecule-based structures

Scaling down information devices to the atomic scale has brought the interest of using individual spins as a basic unit for data storage. This requires precise detection and control of spin states and a better understanding ...

Spintronics: Exotic ferromagnetic order in two-dimensions

The thinnest materials in the world are only a single atom thick. These kinds of two-dimensional or 2D materials—such as graphene, well-known as consisting of a single layer of carbon atoms—are causing a great deal of ...

Atomic-scale 'lasagna' keeps heat at bay

Researchers from Tokyo Metropolitan University have found new ways of controlling how heat flows through thin materials by stacking atomically thin layers of atoms into van der Waals heterostructures. By comparing different ...

page 12 from 26