Neutron stars cast light on quark matter

Quark matter – an extremely dense phase of matter made up of subatomic particles called quarks – may exist at the heart of neutron stars. It can also be created for brief moments in particle colliders on Earth, such as ...

Who gets their mass from the Higgs?

The Higgs field is like an endless ocean through which all matter swims. Some particles are like sponges and sop up mass as they lumber along, while others are as sprightly as tiny minnows and dart right through.

Long live the doubly charmed particle

Finding a new particle is always a nice surprise, but measuring its characteristics is another story and just as important. Less than a year after announcing the discovery of the particle going by the snappy name of Ξcc++ (Xicc++), ...

Using the K computer, scientists predict exotic "di-Omega" particle

Based on complex simulations of quantum chromodynamics performed using the K computer, one of the most powerful computers in the world, the HAL QCD Collaboration, made up of scientists from the RIKEN Nishina Center for Accelerator-based ...

The nucleus—coming soon in 3-D

Physicians have long used CT scans to get 3-D imagery of the inner workings of the human body. Now, physicists are working toward getting their first CT scans of the inner workings of the nucleus. A measurement of quarks ...

How are hadrons born at the huge energies available in the LHC?

Our world consists mainly of particles built up of three quarks bound by gluons. The process of the sticking together of quarks, called hadronisation, is still poorly understood. Physicists from the Institute of Nuclear Physics ...

page 4 from 18