STAR detector has a new inner core

For scientists tracking the transformation of protons and neutrons—the components of atomic nuclei that make up everything we see in the universe today—into a soup of fundamental building blocks known quark-gluon plasma, ...

Big Bang query: Mapping how a mysterious liquid became all matter

The leading theory about how the universe began is the Big Bang, which says that 14 billion years ago the universe existed as a singularity, a one-dimensional point, with a vast array of fundamental particles contained within ...

Compelling evidence for small drops of perfect fluid

Nuclear physicists analyzing data from the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC)—a U.S. Department of Energy (DOE) Office of Science user facility for nuclear physics research at Brookhaven National ...

The state of the early universe: The beginning was fluid

Scientists from the Niels Bohr Institute, University of Copenhagen, and their colleagues from the international ALICE collaboration recently collided xenon nuclei in the superconducting Large Hadron Collider in order to gain ...

The early universe was a fluid quark-gluon plasma

Scientists from the Niels Bohr Institute, University of Copenhagen, and their colleagues from the international ALICE collaboration recently collided xenon nuclei, in order to gain new insights into the properties of the ...

Small, short-lived drops of early universe matter

What was matter like moments after the Big Bang? Particles emerging from the lowest energy collisions of small particles with large heavy nuclei at the Relativistic Heavy Ion Collider (RHIC) could hold the answer. Scientists ...

When fluid flows almost as fast as light—with quantum rotation

Quark-gluon plasma is formed as a result of high-energy collisions of heavy ions. After a collision, for a dozen or so yoctoseconds (10-24 seconds), this most perfect of all known fluids undergoes rapid hydrodynamic expansion ...

The chances of detecting clumps in atomic nuclei are growing

What do atomic nuclei really look like? Are the protons and neutrons they contain distributed chaotically? Or do they perhaps bind into alpha clusters, that is, clumps made up of two protons and two neutrons? In the case ...

page 1 from 7