Solving 'barren plateaus' is the key to quantum machine learning

Many machine learning algorithms on quantum computers suffer from the dreaded "barren plateau" of unsolvability, where they run into dead ends on optimization problems. This challenge had been relatively unstudied—until ...

A new age of 2.5D materials

Scientists are exploring new ways to artificially stack two-dimensional (2D) materials, introducing so-called 2.5D materials with unique physical properties. Researchers in Japan reviewed the latest advances and applications ...

Scientists compute with light inside hair-thin optical fiber

Scientists at Heriot-Watt University in Edinburgh, Scotland, have found a powerful new way to program optical circuits that are critical to the delivery of future technologies such as unhackable communications networks and ...

Traditional computers can solve some quantum problems

There has been a lot of buzz about quantum computers and for good reason. The futuristic computers are designed to mimic what happens in nature at microscopic scales, which means they have the power to better understand the ...

Machine learning takes hold in nuclear physics

Scientists have begun turning to new tools offered by machine learning to help save time and money. In the past several years, nuclear physics has seen a flurry of machine learning projects come online, with many papers published ...

How to verify that quantum chips are computing correctly

In a step toward practical quantum computing, researchers from MIT, Google, and elsewhere have designed a system that can verify when quantum chips have accurately performed complex computations that classical computers can't.

Quantum autoencoders to denoise quantum measurements

Many research groups worldwide are currently trying to develop instruments to collect high-precision measurements, such as atomic clocks or gravimeters. Some of these researchers have tried to achieve this using entangled ...

Researchers put machine learning on path to quantum advantage

There are high hopes that quantum computing's tremendous processing power will someday unleash exponential advances in artificial intelligence. AI systems thrive when the machine learning algorithms used to train them are ...

page 2 from 6