Is the end of the 'particle era' of physics upon us?

The discovery of the Higgs Boson in 2012 represented a major turning point for particle physics marking the completion of what is known as the standard model of particle physics. Yet, the standard model can't answer every ...

Experiments see first evidence of a rare Higgs boson decay

The discovery of the Higgs boson at CERN's Large Hadron Collider (LHC) in 2012 marked a significant milestone in particle physics. Since then, the ATLAS and CMS collaborations have been diligently investigating the properties ...

Self-checking algorithm interprets gravitational-wave data

When two black holes merge, they emit gravitational waves that race through space and time at the speed of light. When these reach Earth, large detectors in the United States (LIGO), Italy (Virgo) and Japan (KAGRA) can detect ...

Probing fundamental symmetries of nature with the Higgs boson

Where did all the antimatter go? After the Big Bang, matter and antimatter should have been created in equal amounts. Why we live in a universe of matter, with very little antimatter, remains a mystery. The excess of matter ...

Random matrix theory approaches the mystery of the neutrino mass

When any matter is divided into smaller and smaller pieces, eventually all you are left with—when it cannot be divided any further—is a particle. Currently, there are 12 different known elementary particles, which in ...

Team first to detect neutrinos made by a particle collider

In a scientific first, a team led by physicists at the University of California, Irvine has detected neutrinos created by a particle collider. The discovery promises to deepen scientists' understanding of the subatomic particles, ...

page 11 from 40