Why does matter exist? Roundness of electrons may hold clues

In the first moments of our universe, countless numbers of protons, neutrons and electrons formed alongside their antimatter counterparts. As the universe expanded and cooled, almost all these matter and antimatter particles ...

Defying gravity with the Brazil nut effect

Physicists from the University of Utrecht and the Faculty of Physics at the University of Warsaw have observed—for the first time experimentally—the Brazil nut effect in a mixture of charged colloidal particles.

Teasing strange matter from the ordinary

In a unique analysis of experimental data, nuclear physicists have made the first-ever observations of how lambda particles, so-called "strange matter," are produced by a specific process called semi-inclusive deep inelastic ...

New type of entanglement lets scientists 'see' inside nuclei

Nuclear physicists have found a new way to use the Relativistic Heavy Ion Collider (RHIC)—a particle collider at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory—to see the shape and details inside ...

Electrons zip along quantum highways in new material

Researchers at the University of Chicago's Pritzker School of Molecular Engineering (PME) have discovered a new material, MnBi6Te10, which can be used to create quantum highways along which electrons can move. These electron ...

page 9 from 40