Quantum communication: making two from one

In the future, quantum physics could become the guarantor of secure information technology. To achieve this, individual particles of light—photons—are used for secure transmission of data. Findings by physicists from ...

Generating multiphoton quantum states on silicon

In a recent study now published in Light: Science & Applications, Ming Zhang, Lan-Tian Feng and an interdisciplinary team of researchers at the departments of quantum information, quantum physics and modern optical instrumentation ...

Space-borne quantum source to secure communication

Soon, powerful quantum computers will be able to easily crack conventional mathematically encrypted codes. Entangled photons generated by a spaceborne quantum source could enable hack-proof key exchange for ultra high security ...

Tracking down the mystery of entangled particles of light

Bernese researchers have taken an important step towards new measurement methods such as quantum spectroscopy. In an experiment, they succeeded in uncovering part of the mystery surrounding the so-called "entangled photons" ...

Entangled LED first to operate in the telecom window

Researchers have demonstrated the first quantum light-emitting diode (LED) that emits single photons and entangled photon pairs with a wavelength of around 1550 nm, which lies within the standard telecommunications window. ...

Quantum 'spooky action at a distance' becoming practical

A team from Griffith's Centre for Quantum Dynamics in Australia have demonstrated how to rigorously test if pairs of photons - particles of light - display Einstein's "spooky action at a distance", even under adverse conditions ...

page 3 from 6