Related topics: cern

Cracking the quantum code: Simulations track entangled quarks

Today, the word "quantum" is everywhere—in company names, movie titles, even theaters. But at its core, the concept of a quantum—the tiniest, discrete amount of something—was first developed to explain the behavior ...

Super strong magnetic fields leave imprint on nuclear matter

A new analysis by the STAR collaboration at the Relativistic Heavy Ion Collider (RHIC), a particle collider at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, provides the first direct evidence of the ...

LHCb: Correlations show nuances of the particle birth process

High-energy ion collisions at the Large Hadron Collider are capable of producing a quark-gluon plasma. But are heavy atomic nuclei really necessary for its formation? And above all: how are secondary particles later born ...

Exotic atomic nucleus sheds light on the world of quarks

Experiments at CERN and the Accelerator Laboratory in Jyväskylä, Finland, have revealed that the radius of an exotic nucleus of aluminum, 26mAl, is much larger than previously thought. The result, described in a paper just ...

The quark model: A personal perspective

The idea that protons and neutrons were composed of even smaller particles, with non-integral electric charges, was proposed in 1963/64 by Andre Petermann, George Zweig and Murray Gell-Mann, who dubbed them "quarks." It was ...

page 2 from 40