Shedding new light on nanolasers using 2-D semiconductors

In his latest line of research, Cun-Zheng Ning, a professor of electrical engineering in the Ira A. Fulton Schools of Engineering at Arizona State University, and his peers explored the intricate balance of physics that governs ...

Two-dimensional material shows promise for optoelectronics

A team of MIT researchers has used a novel material that's just a few atoms thick to create devices that can harness or emit light. This proof-of-concept could lead to ultrathin, lightweight, and flexible photovoltaic cells, ...

Strainoptronics: A new way to control photons

Researchers discovered a new way to engineer optoelectronic devices by stretching a two-dimensional material on top of a silicon photonic platform. Using this method, coined strainoptronics by a team led by George Washington ...

Black phosphorus reveals its secrets

A team of researchers from Université de Montréal, Polytechnique Montréal and the Centre national de la recherche scientifique (CNRS) in France is the first to succeed in preventing two-dimensional layers of black phosphorus ...

Nanotube photodetector built

Researchers at Rice University and Sandia National Laboratories have made a nanotube-based photodetector that gathers light in and beyond visible wavelengths. It promises to make possible a unique set of optoelectronic devices, ...

2-D materials enhance a 3-D world

In the past decade, two-dimensional, 2-D, materials have captured the fascination of a steadily increasing number of scientists. These materials, whose defining feature is having a thickness of only one to very few atoms, ...

page 4 from 7