'Plug-and-play' plasmonic metafibers for ultrafast fiber lasers

Integrating plasmonic metasurfaces on optical fiber tips forming so-called metafibers enriches the functionalities of an ordinary optical fiber, yielding a variety of advanced applications such as planar waveshaping, super-resolution ...

Metasurfaces offer new possibilities for quantum research

Scientists from the Max Planck Institute for the Science of Light and the Friedrich-Alexander-Universität Erlangen-Nürnberg, in cooperation with Sandia National Laboratories, have successfully created photon pairs at several ...

Present and future of nonlinear optical metasurfaces

One of the main objectives of optics is the control of light propagation and confinement. Progress in optics historically started with the development of bulky lenses and mirrors, then prisms and gratings, and so on. The ...

Upside-down design expands wide-spectrum super-camera abilities

By turning a traditional lab-based fabrication process upside down, researchers at Duke University have greatly expanded the abilities of light-manipulating metasurfaces while also making them much more robust against the ...

New laser breakthrough to help understanding of gravitational waves

Gravitational wave scientists from The University of Western Australia have led the development of a new laser mode sensor with unprecedented precision that will be used to probe the interiors of neutron stars and test fundamental ...

Shaping the future of light through reconfigurable metasurfaces

The technological advancement of optical lenses has long been a significant marker of human scientific achievement. Eyeglasses, telescopes, cameras, and microscopes have all literally and figuratively allowed us to see the ...

page 6 from 14