Massive photons in an artificial magnetic field

An international research collaboration from Poland, the UK and Russia has created a two-dimensional system—a thin optical cavity filled with liquid crystal—in which they trapped photons. As the properties of the cavity ...

Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a ...

Shape-encoded dynamic assembly of mobile micromachines

Field-directed and self-propelled colloidal assembly can be used to build micromachines to perform complex motions and functions, although their integration as heterogenous components with specified structures, dynamics and ...

On-demand control of terahertz and infrared waves

The ability to control infrared and terahertz waves using magnetic or electric fields is one of the great challenges in physics that could revolutionise opto-electronics, telecommunications and medical diagnostics. A theory ...

Measuring the laws of nature

A physical constant, which is of great importance for basic research, has now be re-measured, with much higher precision than ever before.

Advanced NMR captures new details in nanoparticle structures

Advanced nuclear magnetic resonance (NMR) techniques at the U.S. Department of Energy's Ames Laboratory have revealed surprising details about the structure of a key group of materials in nanotechology, mesoporous silica ...

New result in hunt for mysterious magnetic monopoles

Cutting a magnet in half yields two magnets, each with its own north and south pole. This apparent absence of an isolated magnetic pole, or "magnetic monopole," has puzzled physicists for more than a century. It would seem ...

page 1 from 23