Related topics: cern · large hadron collider

Under the radar: Searching for stealthy supersymmetry

The standard model of particle physics encapsulates our current knowledge of elementary particles and their interactions. The standard model is not complete; for example, it does not describe observations such as gravity, ...

Go ahead for dark matter experiment

Neutrinos are the shyest elementary particles known to exist. At this moment billions of them are shooting through each square centimeter of your body.

Recreating Big Bang matter on Earth

The Large Hadron Collider (LHC) at CERN usually collides protons together. It is these proton–proton collisions that led to the discovery of the Higgs boson in 2012. But the world's biggest accelerator was also designed ...

Upgrades yield increased cryogenic power at Large Hadron Collider

The Large Hadron Collider (LHC) is one of the coldest places on Earth. The 1.9 K (-271.3 °C) operating temperature of its main magnets is even lower than the 2.7 K (-270.5 °C) of outer space. To get the LHC to this temperature, ...

Breaking new ground in the search for dark matter

The Large Hadron Collider (LHC) is renowned for the hunt for and discovery of the Higgs boson, but in the 10 years since the machine collided protons at an energy higher than previously achieved at a particle accelerator, ...

Learning more about particle collisions with machine learning

The Large Hadron Collider (LHC) near Geneva, Switzerland became famous around the world in 2012 with the detection of the Higgs boson. The observation marked a crucial confirmation of the Standard Model of particle physics, ...

LHCf gears up to probe birth of cosmic-ray showers

Cosmic rays are particles from outer space, typically protons, travelling at almost the speed of light. When the most energetic of these particles strike the atmosphere of our planet, they interact with atomic nuclei in the ...

page 4 from 26