Related topics: cern · large hadron collider

LHCf gears up to probe birth of cosmic-ray showers

Cosmic rays are particles from outer space, typically protons, travelling at almost the speed of light. When the most energetic of these particles strike the atmosphere of our planet, they interact with atomic nuclei in the ...

Sensor used at CERN could help gravitational wave hunters

It started with a relatively simple goal: create a prototype for a new kind of device to monitor the motion of underground structures at CERN. But the project—the result of a collaboration between CERN and the Joint Institute ...

Boosting computing power for the future of particle physics

A new machine learning technology tested by an international team of scientists including MIT Assistant Professor Philip Harris and postdoc Dylan Rankin, both of the Laboratory for Nuclear Science, can spot specific particle ...

Super Proton Synchrotron to receive a new beam dump

By the end of the second long shutdown (LS2) of CERN's accelerator complex, a nine-metre-long object with several hundred tonnes of shielding will be installed around the beam line of the Super Proton Synchrotron (SPS). But ...

High-Luminosity LHC: Diggers at work 100 meters underground

Dig, dig, dig. One hundred meters underground, excavation work is under way for the High-Luminosity Large Hadron Collider project. This next-generation LHC, which will begin operation in 2026, will reach luminosities five ...

The waltz of the LHC magnets has begun

Major endeavors are underway in the Large Hadron Collider (LHC) over the past few weeks, with the extraction of magnets from the accelerator tunnel. The LHC has a total of 1232 dipoles, magnets which bend the particles' trajectories, ...

LS2 report: Before the return of the cold

Since the start of January, the liquid helium flowing through the veins of the LHC's cooling system has gradually been removed the accelerator and, one by one, the eight sectors of the LHC have been brought back to room temperature. ...

Successful tests of a cooler way to transport electricity

Like a metal python, the huge pipe snaking through a CERN high-tech hall is actually a new electrical transmission line. This superconducting line is the first of its kind and allows vast quantities of electrical current ...

page 1 from 22

Large Hadron Collider

Coordinates: 46°14′N 06°03′E / 46.233°N 6.05°E / 46.233; 6.05

The Large Hadron Collider (LHC) is the world's largest and highest-energy particle accelerator, intended to collide opposing particle beams, of either protons at an energy of 7 TeV per particle, or lead nuclei at an energy of 574 TeV per nucleus. The Large Hadron Collider was built by the European Organization for Nuclear Research (CERN) with the intention of testing various predictions of high-energy physics, including the existence of the hypothesized Higgs boson and of the large family of new particles predicted by supersymmetry. It lies in a tunnel 27 kilometres (17 mi) in circumference, as much as 175 metres (570 ft) beneath the Franco-Swiss border near Geneva, Switzerland. It is funded by and built in collaboration with over 10,000 scientists and engineers from over 100 countries as well as hundreds of universities and laboratories.

On 10 September 2008, the proton beams were successfully circulated in the main ring of the LHC for the first time. On 19 September 2008, the operations were halted due to a serious fault between two superconducting bending magnets. Due to the time required to repair the resulting damage and to add additional safety features, the LHC is scheduled to be operational in mid-November 2009.

This text uses material from Wikipedia, licensed under CC BY-SA