'Strange' glimpse into neutron stars and symmetry violation

New results from precision particle detectors at the Relativistic Heavy Ion Collider (RHIC) offer a fresh glimpse of the particle interactions that take place in the cores of neutron stars and give nuclear physicists a new ...

Scientists 'tune in' to proton spin precession

Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have developed a non-invasive way to measure the "spin tune" of polarized protons at the Relativistic Heavy Ion Collider (RHIC)—an important factor ...

Electron bunches keep ions cool at RHIC

Accelerator physicists have demonstrated a groundbreaking technique using bunches of electrons to keep beams of particles cool at the Relativistic Heavy Ion Collider (RHIC)—a U.S. Department of Energy Office of Science ...

STAR detector has a new inner core

For scientists tracking the transformation of protons and neutrons—the components of atomic nuclei that make up everything we see in the universe today—into a soup of fundamental building blocks known quark-gluon plasma, ...

ATLAS experiment observes light scattering off light

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

Compelling evidence for small drops of perfect fluid

Nuclear physicists analyzing data from the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC)—a U.S. Department of Energy (DOE) Office of Science user facility for nuclear physics research at Brookhaven National ...

STAR Detector on the move

How long does it take to roll a twelve-hundred-ton detector one hundred feet? In late August, it took 10 hours for the STAR detector to roll from its regular spot in the interaction region of the Relativistic Heavy Ion Collider ...

page 5 from 12