Related topics: cern

Under the radar: Searching for stealthy supersymmetry

The standard model of particle physics encapsulates our current knowledge of elementary particles and their interactions. The standard model is not complete; for example, it does not describe observations such as gravity, ...

ATLAS searches for pairs of Higgs bosons in a rare particle decay

Since the Higgs boson was discovered in 2012, scientists at the Large Hadron Collider (LHC) have been studying the properties of this very special particle and its relation to the fundamental mechanism essential to the generation ...

ATLAS finds evidence of a rare Higgs boson decay

Since the discovery of the Higgs boson in 2012, scientists in the ATLAS and CMS collaborations at the Large Hadron Collider (LHC) have been hard at work characterizing its properties and hunting down the diverse ways in which ...

Refining the picture of the Higgs boson

To explain the masses of electroweak bosons—the W and Z bosons—theorists in the 1960s postulated a mechanism of spontaneous symmetry breaking. While this mathematical formalism is relatively simple, its cornerstone—the ...

Higgs boson probes for new phenomena

Physicists at CERN's Large Hadron Collider (LHC) are on the hunt for physics phenomena beyond the standard model. Some theories predict an as-yet undiscovered particle could be found in the form of a new resonance (a narrow ...

Extremely rare Higgs boson decay process spotted

The Higgs boson reached overnight fame in 2012 when it was finally discovered in a jumble of other particles generated at CERN's Large Hadron Collider (LHC) in Geneva, Switzerland. The discovery was monumental because the ...

Probing the properties of magnetic quasi-particles

Researchers have for the first time measured a fundamental property of magnets called magnon polarization—and in the process, are making progress towards building low-energy devices.

page 6 from 39