Related topics: large hadron collider

Looking for sterile neutrinos in the CMS muon system

The CMS collaboration has recently presented new results in searches for long-lived heavy neutral leptons (HNLs). Also known as "sterile neutrinos", HNLs are interesting hypothetical particles that could solve three major ...

ATLAS sets record precision on Higgs boson's mass

In the 11 years since its discovery at the Large Hadron Collider (LHC), the Higgs boson has become a central avenue for shedding light on the fundamental structure of the universe. Precise measurements of the properties of ...

Experiments see first evidence of a rare Higgs boson decay

The discovery of the Higgs boson at CERN's Large Hadron Collider (LHC) in 2012 marked a significant milestone in particle physics. Since then, the ATLAS and CMS collaborations have been diligently investigating the properties ...

Probing fundamental symmetries of nature with the Higgs boson

Where did all the antimatter go? After the Big Bang, matter and antimatter should have been created in equal amounts. Why we live in a universe of matter, with very little antimatter, remains a mystery. The excess of matter ...

Improved ATLAS result weighs in on the W boson

The W boson, a fundamental particle that carries the charged weak force, is the subject of a new precision measurement of its mass by the ATLAS experiment at CERN.

What comes after the Higgs boson

Ten years ago this week, two international collaborations of groups of scientists, including a large contingent from Caltech, confirmed that they had found conclusive evidence for the Higgs boson, an elusive elementary particle, ...

The standard model of particle physics may be broken, expert says

As a physicist working at the Large Hadron Collider (LHC) at Cern, one of the most frequent questions I am asked is "When are you going to find something?" Resisting the temptation to sarcastically reply "Aside from the Higgs ...

page 7 from 28