Getting to the heart of frustrated magnetism

Thin films of helium atoms with nuclei of two protons and one neutron—helium-3—intrigue physicists because they have exhibited unusual and unexpected magnetic behavior in experimental investigations.

LHCb reveals secret of antimatter creation in cosmic collisions

At the Quark Matter conference today and at the recent Rencontres de Moriond conference, the LHCb collaboration presented an analysis of particle collisions at the Large Hadron Collider (LHC) that may help determine whether ...

Scientists observe a new form of strange matter

In a discovery that could provide new insights into the origin of mass in the universe following the Big Bang, scientists from the international J-PARC E15 Collaboration, led by researchers from the RIKEN Cluster for Pioneering ...

Cosmic collisions at the LHCb experiment

Last week at the 52nd Rencontres de Moriond EW in La Thuile, Italy, the LHCb experiment presented the results of an unprecedented and unusual study. Instead of the usual proton-proton collisions, this time the LHCb detector ...

Oh-My-God Particles

Cosmic rays are really sub-atomic particles, being mainly protons (hydrogen nuclei) and occasionally helium or heavier atomic nuclei and very occasionally electrons. Cosmic ray particles are very energetic as a result of ...

The chances of detecting clumps in atomic nuclei are growing

What do atomic nuclei really look like? Are the protons and neutrons they contain distributed chaotically? Or do they perhaps bind into alpha clusters, that is, clumps made up of two protons and two neutrons? In the case ...

page 2 from 2