Theory and experiment combine to shine a new light on proton spin

Nuclear physicists have long been working to reveal how the proton gets its spin. Now, a new method that combines experimental data with state-of-the-art calculations has revealed a more detailed picture of spin contributions ...

LHCb observes a new decay mode of the charmed beauty meson

The LHCb collaboration recently reported on the arXiv preprint server the first observation of the decay of the Bc+ meson (composed of two heavy quarks, b and c) into a J/ψ charm-anticharm quark bound state and a pair of ...

Super strong magnetic fields leave imprint on nuclear matter

A new analysis by the STAR collaboration at the Relativistic Heavy Ion Collider (RHIC), a particle collider at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, provides the first direct evidence of the ...

New driver for shapes of small quark-gluon plasma drops?

New measurements of how particles flow from collisions of different types of particles at the Relativistic Heavy Ion Collider (RHIC) have provided new insights into the origin of the shape of hot specks of matter generated ...

Calculation shows why heavy quarks get caught up in the flow

Using some of the world's most powerful supercomputers, a group of theorists has produced a major advance in the field of nuclear physics—a calculation of the "heavy quark diffusion coefficient." This number describes how ...

page 1 from 7