Antihelium-4: Physicists nab new record for heaviest antimatter

(PhysOrg.com) -- Members of the international STAR collaboration at the Relativistic Heavy Ion Collider -- a particle accelerator used to recreate and study conditions of the early universe at the U.S. Department of Energy's ...

New type of entanglement lets scientists 'see' inside nuclei

Nuclear physicists have found a new way to use the Relativistic Heavy Ion Collider (RHIC)—a particle collider at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory—to see the shape and details inside ...

Novel hydrogel removes microplastics from water

Microplastics pose a great threat to human health. These tiny plastic debris can enter our bodies through the water we drink and increase the risk of illnesses. They are also an environmental hazard; found even in remote ...

The perfect liquid -- now even more perfect

Ultra hot quark-gluon-plasma, generated by heavy-ion collisions in particle accelerators, is supposed to be the "most perfect fluid" in the world. Previous theories imposed a limit on how "liquid" fluids can be. Recent results ...

Signs of saturation emerge from particle collisions at RHIC

Nuclear physicists studying particle collisions at the Relativistic Heavy Ion Collider (RHIC)—a U.S. Department of Energy Office of Science user facility at DOE's Brookhaven National Laboratory—have new evidence that ...

Collisions of light produce matter/antimatter from pure energy

Scientists studying particle collisions at the Relativistic Heavy Ion Collider (RHIC)—a U.S. Department of Energy Office of Science user facility for nuclear physics research at DOE's Brookhaven National Laboratory—have ...

'Bubbles' of Broken Symmetry in Quark Soup at RHIC (w/ Video)

Scientists at the Relativistic Heavy Ion Collider (RHIC), a 2.4-mile-circumference particle accelerator at the U.S. DOE's Brookhaven National Laboratory, report the first hints of profound symmetry transformations in the ...

High-energy particle collisions reveal the unexpected

The nucleus of an atom is composed of protons and neutrons, which are themselves made up of elementary particles called quarks and gluons. Observing these elementary particles is difficult and typically involves smashing ...

page 2 from 9