Compelling evidence for small drops of perfect fluid

Nuclear physicists analyzing data from the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC)—a U.S. Department of Energy (DOE) Office of Science user facility for nuclear physics research at Brookhaven National ...

Scientists model the 'flicker' of gluons in subatomic smashups

Scientists exploring the dynamic behavior of particles emerging from subatomic smashups at the Relativistic Heavy Ion Collider (RHIC)-a U.S. Department of Energy Office of Science User Facility for nuclear physics research ...

Physicists measure force that makes antimatter stick together

Peering at the debris from particle collisions that recreate the conditions of the very early universe, scientists have for the first time measured the force of interaction between pairs of antiprotons. Like the force that ...

Antihelium-4: Physicists nab new record for heaviest antimatter

(PhysOrg.com) -- Members of the international STAR collaboration at the Relativistic Heavy Ion Collider -- a particle accelerator used to recreate and study conditions of the early universe at the U.S. Department of Energy's ...

A flow of heavy-ion results from the Large Hadron Collider

The Large Hadron Collider shut down its proton beams on Nov. 4, 2010, and quickly began circulating beams of lead ions, a run scheduled to last a month. Within days, the first results from ALICE, the LHC experiment designed ...

Explained: Quark gluon plasma

For a few millionths of a second after the Big Bang, the universe consisted of a hot soup of elementary particles called quarks and gluons. A few microseconds later, those particles began cooling to form protons and neutrons, ...

page 2 from 10