A flow of heavy-ion results from the Large Hadron Collider

The Large Hadron Collider shut down its proton beams on Nov. 4, 2010, and quickly began circulating beams of lead ions, a run scheduled to last a month. Within days, the first results from ALICE, the LHC experiment designed ...

Scientists model the 'flicker' of gluons in subatomic smashups

Scientists exploring the dynamic behavior of particles emerging from subatomic smashups at the Relativistic Heavy Ion Collider (RHIC)-a U.S. Department of Energy Office of Science User Facility for nuclear physics research ...

The heaviest known antimatter

When an international team of scientists working at the Relativistic Heavy Ion Collider (RHIC) announced the discovery of the most massive antinucleus to date — and the first containing an anti-strange quark — it ...

Simple math, antimatter, and the birth of the Universe

If x2 = 4, then what is x? Did you just think "2"? Is that correct? Well, yes and no. The fact that there is a parallel but equally valid answer that x is negative 2 has been a difficult and intriguing conundrum to everyone ...

Explained: Quark gluon plasma

For a few millionths of a second after the Big Bang, the universe consisted of a hot soup of elementary particles called quarks and gluons. A few microseconds later, those particles began cooling to form protons and neutrons, ...

'Perfect' Liquid Hot Enough to be Quark Soup (w/ Video)

Recent analyses from the Relativistic Heavy Ion Collider (RHIC), a 2.4-mile-circumference "atom smasher" at the U.S. DOE's Brookhaven National Laboratory, establish that collisions of gold ions traveling at nearly the speed ...

Cracking the quantum code: Simulations track entangled quarks

Today, the word "quantum" is everywhere—in company names, movie titles, even theaters. But at its core, the concept of a quantum—the tiniest, discrete amount of something—was first developed to explain the behavior ...

page 4 from 10