Hard carbon nanofiber aerogel becomes superelastic

Conductive and compressible carbon aerogels are useful in a variety of applications. In recent decades, carbon aerogels have been widely explored by using graphitic carbons and soft carbons, which show advantages in superelasticity. ...

Material for new-generation atomic reactors developed

Materials scientists from the National University of Science and Technology "MISIS" (NUST MISIS) developed a unique sandwich steel-vanadium-steel material that is able to withstand temperatures of up to 700°C, hard radiation ...

New method opens the way for cutting tools with longer lifetime

Researchers at Linköping University, LiU, have developed a theoretical model that enables simulations for showing what happens in hard cutting materials as they degrade. The model will enable manufacturing industries to ...

Magnetoresistance ratio enhancement in Heusler-based alloy

Magnetic field sensors can enhance applications that require efficient electric energy management. Improving magnetic field sensors below the picoTesla range could enable a technique to measure brain activity at room temperature ...

The promise of deep grooves

A manufacturing technique that could help the semiconductor industry make more powerful computer chips began in the humblest of places—at a lunch table at the U.S. Department of Energy's (DOE) Argonne National Laboratory.

page 3 from 5