Successful boron-doping of graphene nanoribbon

Physicists at the University of Basel succeed in synthesizing boron-doped graphene nanoribbons and characterizing their structural, electronic and chemical properties. The modified material could potentially be used as a ...

Team develops chemical solution for graphene challenges

There's no question that graphene is a really cool material. It's the thinnest substance ever made, a one-atom-thick sheet of carbon atoms arranged in a hexagonal honeycomb pattern. Although it's as stiff as diamond and hundreds ...

Molecular nanoribbons as electronic highways

Physicists at Umeå University have, together with researchers at UC Berkeley, USA, developed a method to synthesise a unique and novel type of material which resembles a graphene nanoribbon but in molecular form. This material ...

Molecular self-assembly controls graphene-edge configuration

A research team headed by Prof. Patrick Han and Prof. Taro Hitosugi at the Advanced Institute of Materials Research (AIMR), Tohoku University discovered a new bottom-up fabrication method that produces defect-free graphene ...

Shaping atomically thin materials in suspended structures

Researchers at Tohoku University have realized wafer-scale and high yield synthesis of suspended graphene nanoribbons. The unique growth dynamic has been elucidated through comparing experiments, molecular dynamics simulations ...

page 6 from 7