How do massive young star clusters form?

Young massive star clusters are systems of stars with more than about ten thousand solar-masses of material and ages less than about one hundred million years that are gravitationally bound together. In these clusters the ...

Messier 3 (M3) – the NGC 5272 globular cluster

During the late 18th century, Charles Messier began to notice a series of "nebulous" objects in the night sky which he originally mistook for comets. With the hope of preventing other astronomers from making the same mistake, ...

Globular clusters could host interstellar civilizations

Globular star clusters are extraordinary in almost every way. They're densely packed, holding a million stars in a ball only about 100 light-years across on average. They're old, dating back almost to the birth of the Milky ...

Image: Hubble checks out a home for old stars

This image, taken with the Wide Field Planetary Camera 2 on board the NASA/ESA Hubble Space Telescope, shows the globular cluster Terzan 1. Lying around 20,000 light-years from us in the constellation of Scorpius (The Scorpion), ...

A 'ghost from the past' recalls the infancy of the Milky Way

When our galaxy was born, around 13,000 million years ago, a plethora of clusters containing millions of stars emerged. But over time, they have been disappearing. However, hidden behind younger stars that were formed later, ...

Peering into building blocks of galaxies

(Phys.org)—When a giant cloud of molecular gas condenses, star clusters are born. It may sound simple but the formation of star clusters is a very complex process, not yet completely understood by scientists. By peering ...

Image: Hubble sees a youthful cluster

Shown here in a new image taken with the Advanced Camera for Surveys (ACS) on board the NASA/ESA Hubble Space Telescope is the globular cluster NGC 1783. This is one of the biggest globular clusters in the Large Magellanic ...

Fossil star clusters reveal their age

Using a new age-dating method, an international team of astronomers has determined that ancient star clusters formed in two distinct epochs – the first 12.5 billion years ago and the second 11.5 billion years ago.

How neutron stars can break up clusters

A supernova explosion at the end of a large star's life can leave the collapsed core, or neutron star, hurtling away from its dust and gas envelope at hundreds of kilometres per second. Now, astronomers have found that even ...

page 10 from 16