Are we missing a crucial component of sea-level rise?

Recent efforts using computational modeling to understand how melting ice in Antarctica will impact the planet's oceans have focused on ice-sheet geometry, fracture, and surface melting—processes that could potentially ...

Strange warping geometry helps to push scientific boundaries

Atomic interactions in everyday solids and liquids are so complex that some of these materials' properties continue to elude physicists' understanding. Solving the problems mathematically is beyond the capabilities of modern ...

Beautiful math of fractals

(PhysOrg.com) -- What do mountains, broccoli and the stock market have in common? The answer to that question may best be explained by fractals, the branch of geometry that explains irregular shapes and processes, ranging ...

Hermit 'scribblings' of eccentric French math genius unveiled

Tens of thousands of handwritten pages by one of the 20th century's greatest mathematicians, Alexander Grothendieck, many of which the eccentric genius penned while living as a hermit, were unveiled in France on Friday.

OrcaM is new kid on block for 3-D data capture

(PhysOrg.com) -- Call it automated photograph station, seven-camera system, 3-D model showcase, or digital reconstruction tool. OrcaM is being described as all these things. Whatever the tag, the "OrcaM" name stands for Orbital ...

Finding the simple patterns in a complex world

An ANU mathematician has developed a new way to uncover simple patterns that might underlie apparently complex systems, such as clouds, cracks in materials or the movement of the stockmarket.

page 1 from 10

Geometry

Geometry (Ancient Greek: γεωμετρία; geo- "earth", -metria "measurement") is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. Geometry is one of the oldest mathematical sciences. Initially a body of practical knowledge concerning lengths, areas, and volumes, in the 3rd century BC geometry was put into an axiomatic form by Euclid, whose treatment—Euclidean geometry—set a standard for many centuries to follow. Archimedes developed ingenious techniques for calculating areas and volumes, in many ways anticipating modern integral calculus. The field of astronomy, especially mapping the positions of the stars and planets on the celestial sphere and describing the relationship between movements of celestial bodies, served as an important source of geometric problems during the next one and a half millennia. A mathematician who works in the field of geometry is called a geometer.

The introduction of coordinates by René Descartes and the concurrent development of algebra marked a new stage for geometry, since geometric figures, such as plane curves, could now be represented analytically, i.e., with functions and equations. This played a key role in the emergence of infinitesimal calculus in the 17th century. Furthermore, the theory of perspective showed that there is more to geometry than just the metric properties of figures: perspective is the origin of projective geometry. The subject of geometry was further enriched by the study of intrinsic structure of geometric objects that originated with Euler and Gauss and led to the creation of topology and differential geometry.

In Euclid's time there was no clear distinction between physical space and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation, and the question arose which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, also 'space' (and 'point', 'line', 'plane') lost its intuitive contents, so today we have to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meaning) and abstract spaces. Contemporary geometry considers manifolds, spaces that are considerably more abstract than the familiar Euclidean space, which they only approximately resemble at small scales. These spaces may be endowed with additional structure, allowing one to speak about length. Modern geometry has multiple strong bonds with physics, exemplified by the ties between pseudo-Riemannian geometry and general relativity. One of the youngest physical theories, string theory, is also very geometric in flavour.

While the visual nature of geometry makes it initially more accessible than other parts of mathematics, such as algebra or number theory, geometric language is also used in contexts far removed from its traditional, Euclidean provenance (for example, in fractal geometry and algebraic geometry).

This text uses material from Wikipedia, licensed under CC BY-SA