Time-resolved crystallography for the masses

Scientists from four research institutes in the Science City Hamburg Bahrenfeld have joined forces to develop a ground-breaking experimental setup. Their new Spitrobot greatly simplifies observing changes in proteins as they ...

Improved ATLAS result weighs in on the W boson

The W boson, a fundamental particle that carries the charged weak force, is the subject of a new precision measurement of its mass by the ATLAS experiment at CERN.

Fundamental constants: Is the universe fine-tuned for life?

Imagine a universe with extremely strong gravity. Stars would be able to form from very little material. They would be smaller than in our universe and live for a much shorter amount of time. But could life evolve there? ...

The strength of the strong force

Much ado was made about the Higgs boson when this elusive particle was discovered in 2012. Though it was touted as giving ordinary matter mass, interactions with the Higgs field only generate about 1 percent of ordinary mass. ...

Large Hadron Collider revs up to unprecedented energy level

Ten years after it discovered the Higgs boson, the Large Hadron Collider is about to start smashing protons together at unprecedented energy levels in its quest to reveal more secrets about how the universe works.

page 2 from 15