Physicists find unusual waves in nickel-based magnet

Perturbing electron spins in a magnet usually results in excitations called "spin waves" that ripple through the magnet like waves on a pond that's been struck by a pebble. In a new study, Rice University physicists and their ...

Examining recent developments in quantum chromodynamics

Created as an analogy for Quantum Electrodynamics (QED) — which describes the interactions due to the electromagnetic force carried by photons — Quantum Chromodynamics (QCD) is the theory of physics that explains ...

A new beat in quantum matter

Oscillatory behaviors are ubiquitous in nature, ranging from the orbits of planets to the periodic motion of a swing. In pure crystalline systems, presenting a perfect spatially-periodic structure, the fundamental laws of ...

ITER blanket technology approved

(Phys.org) —The design of the ITER blanket system, a crucial technology on the way to fusion power, has been approved and is now ready to proceed to the manufacturing stage. "The development and validation of the final ...

It looks like dark matter can be heated up and moved around

Look at a galaxy, what do you see? Probably lots of stars. Nebulae too. And that's probably it. A whole bunch of stars and gas in a variety of colorful assortments; a delight to the eye. And buried among those stars, if you ...

Magnetic fields created before the first stars

Magnets have practically become everyday objects. Earlier on, however, the universe consisted only of nonmagnetic elements and particles. Just how the magnetic forces came into existence has been researched by Prof. Dr. Reinhard ...

As 'Run 3' begins, CERN touts discovery of exotic particles

The physics lab that's home to the world's largest atom smasher announced on Tuesday the observation of three new "exotic particles" that could provide clues about the force that binds subatomic particles together.

page 4 from 8