Spintronics: How an atom-thin insulator helps transport spins

An intermediate layer consisting of a few atoms is helping to improve the transport of spin currents from one material to another. Until now, this process involves significant losses. A team from Martin Luther University ...

Graphene tunnelling junctions: beyond the breaking point

Molecular electronics is a burgeoning field of research that aims to integrate single molecules as active elements in electronic devices. Obtaining a complete picture of the charge transport properties in molecular junctions ...

Semiconductor works better when hitched to graphene

Graphene – a one-atom-thick sheet of carbon with highly desirable electrical properties, flexibility and strength – shows great promise for future electronics, advanced solar cells, protective coatings and other uses, ...

Polymer solar cells employing Forster resonance energy transfer

Two crucial tasks exist for realizing high-efficiency polymer solar cells: increasing the range of the spectral absorption of light and efficiently harvesting photo-generated excitons. In this work, Förster resonance energy ...

New bus system tops off batteries in just 15 seconds

(Phys.org) —A new type of battery bus system being tested in Switzerland is able to operate continually by making use of flash-charging stations. Called Trolleybus Optimisation Systeme Alimentation (TOSA), the new bus and ...

page 3 from 6