Colliding lasers double the energy of proton beams

Researchers from Sweden's Chalmers University of Technology and the University of Gothenburg present a new method which can double the energy of a proton beam produced by laser-based particle accelerators. The breakthrough ...

Optimizing proton beam therapy with mathematical models

Particle beam therapy is increasingly being used to treat many types of cancer. It consists in subjecting tumours to beams of high-energy charged particles such as protons. Although more targeted than conventional radiotherapy ...

Quantum optical cooling of nanoparticles

When a particle is completely isolated from its environment, the laws of quantum physics start to play a crucial role. One important requirement to see quantum effects is to remove all thermal energy from the particle motion, ...

Quasiparticles experimentally shown to interfere for first time

Qubits, the units used to encode information in quantum computing, are not all created equal. Some researchers believe that topological qubits, which are tougher and less susceptible to environmental noise than other kinds, ...

Scientists move quantum optic networks a step closer to reality

Scientists have moved quantum optic networks a step closer to reality. The ability to precisely control the interactions of light and matter at the nanoscale could help such a network transmit larger amounts of data more ...

Powerful X-ray beams unlock secrets of nanoscale crystal formation

High-energy X-ray beams and a clever experimental setup allowed researchers to watch a high-pressure, high-temperature chemical reaction to determine for the first time what controls formation of two different nanoscale crystalline ...

High-contrast imaging for cancer therapy with protons

Medical physicist Dr. Aswin Hoffmann and his team from the Institute of Radiooncology—OncoRay at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have combined magnetic resonance imaging (MRI) with a proton beam, thus demonstrating ...

page 1 from 10