Probing fundamental symmetries of nature with the Higgs boson

Where did all the antimatter go? After the Big Bang, matter and antimatter should have been created in equal amounts. Why we live in a universe of matter, with very little antimatter, remains a mystery. The excess of matter ...

Detectors for a new era of ATLAS physics

The High-Luminosity upgrade of the Large Hadron Collider (HL-LHC) will dramatically increase the rate of collisions in the ATLAS experiment. While offering an opportunity for physicists to explore some of the rarest processes ...

Probing dark matter with the Higgs boson

Visible matter—everything from pollen to stars and galaxies—accounts for roughly 15% of the total mass of the universe. The remaining 85% is made of something entirely different from things we can touch and see: dark ...

ATLAS Experiment releases new search for strong supersymmetry

New particles sensitive to the strong interaction might be produced in abundance in the proton-proton collisions generated by the Large Hadron Collider (LHC) – provided that they aren't too heavy. These particles could ...

Zooming in on top-quark production

As the heaviest known elementary particle, the top quark has a special place in the physics studied at the Large Hadron Collider (LHC) at CERN. Top quark-antiquark pairs are copiously produced in collisions recorded by the ...

ATLAS Experiment explores the Higgs boson 'discovery channels'

At the European Physical Society Conference on High-Energy Physics (EPS-HEP) in Ghent, Belgium, the ATLAS Collaboration at CERN released new measurements of Higgs boson properties using the full LHC Run 2 dataset. Critically, ...

page 1 from 3