Scientists create first crystal structure of an intermediate particle in virus assembly

February 8, 2009,

The structure, described February 8 in an advance online publication of the journal Nature, provides fresh insights into the elegant dance that viral proteins perform to create the infectious structure that causes all manner of misery and disease, say researchers. While the virus they studied, HK97, only infects bacteria, well-known viruses such as herpes and HIV are also known to assemble an "intermediary" structure before morphing into its final assault-proof, infectious form.

"The principles of this multi-stage protein coat assembly will likely be similar across all complex viruses," says the study's senior author, Scripps Research Professor John E. Johnson. "But this process has never been seen before at this resolution, and now we known that what we thought happens, doesn't."

That's important, Johnson says, because if scientists understand how a virus builds its protective coat, they may be able to medically target vulnerabilities in the first stage of that assembly. "We believe that without its final shell to protect it, an immature virus will be much more defenseless to antiviral agents," he says.

Knowing how viruses build these vessels to protect the naked viral DNA inside is also useful in the field of medical nanotechnology, he adds. "The immature coat has lots of holes in it through which we could load drugs, and then seal it in the mature form to produce a potent delivery system," Johnson says.

Johnson and his research team have long studied HK97, and had "solved" the structure of the virus's mature outer coat. It is made up of 72 protein rings - 12 pentagons and 60 hexagons - locked together like the chain mail suits worn by knights. This coating forms the head of the virus, which is extremely small - thousands of times narrower than a human hair.

The thin viral armor offers protection and stability as well as freedom of movement, Johnson says. "This is a container that works very well."

But the researchers say they spent five "painful" years trying to produce a crystal structure of the intermediate particle they knew was assembled first. They had produced images using electron microscopy, but they weren't detailed enough to understand the molecular processes involved.

The scientists built the viral shells in a test tube. Genes that encode the 420 proteins that make up the coat were expressed in e coli bacteria, the normal host of the virus. These proteins spontaneously assemble and form the immature particles. In the presence of viral DNA and the enzymes that pump it into the particles, they instantly form a mature coat that engulfs the genes.

The study's first author, Ilya Gertsman, a researcher in Johnson's lab, kept trying to capture the crystal structure of the intermediate form of the virus, but it always quickly morphed into its final armored form, even without DNA present. Finally, working with collaborators from the University of Pittsburgh, Gertsman used a form of HK97 that was mutated in such a way that made it slow to mature.

What the researchers saw from the crystal structure "was so beautiful," Gertsman says. The proteins that made up the spherical, soccer ball-like form were flat in shape and pointed outward, like hands placed palm to palm in prayer. But the moment the structure "sensed" the presence of DNA it immediately changed shape. In essence, the fingers on the praying hands folded down together, fingers interspersed and grasping each other. "That's why the final protein coat is so stable. The proteins are all intertwined around each other," Johnson says. Previously it was thought that the proteins went through this motion as a nearly rigid unit. This study showed that the proteins significantly changed in structure during the transition. The researchers don't yet know if this structural change happens all at once, or if it moves like a wave around the sphere.

They hypothesize that domains that hang from each of the proteins that eventually form the viral coat drive the process of changing the structure. The tails interact with each other to distort the shape of the proteins, Johnson says. "As long as the tails are there, the process of change is reversible. When the tails are gone (removed by a viral enzyme), the structure becomes stable," he says. Researchers had thought these tails, which are scaffolding proteins, guided assembly of the particle "but we think they actually change the structure," Johnson says. "That offers us another target by which we may be able to interrupt assembly of the coat."

Paper: "An unexpected twist in viral capsid maturation," Nature online, February 8.

Source: Scripps Research Institute

Explore further: Team gets a closer look at how proteins meet on the cell membrane

Related Stories

SwissFEL makes protein structures visible

October 10, 2018

For the development of new medicinal agents, accurate knowledge of biological processes in the body is a prerequisite. Here proteins play a crucial role. At the Paul Scherrer Institute PSI, the X-ray free-electron laser SwissFEL ...

Protein dynamics: Molecular machines at work

October 8, 2018

Researchers from Ludwig-Maximilians-Universitaet (LMU) in Munich have used a special fluorescence-based imaging technique to track the shape changes that occur when pore proteins in the cell membrane export molecules into ...

Liquid crystals and the origin of life

October 3, 2018

The display screens of modern televisions, cell phones and computer monitors rely on liquid crystals—materials that flow like liquids but have molecules oriented in crystal-like structures. However, liquid crystals may ...

Recommended for you

Antarctic ice shelf 'sings' as winds whip across its surface

October 16, 2018

Winds blowing across snow dunes on Antarctica's Ross Ice Shelf cause the massive ice slab's surface to vibrate, producing a near-constant set of seismic "tones" scientists could potentially use to monitor changes in the ice ...

Loss of a microRNA molecule boosts rice production

October 16, 2018

The wild rice consumed by our Neolithic ancestors was very different from the domesticated rice eaten today. Although it is unclear when humans first started farming rice, the oldest paddy fields—in the lower Yangzi River ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.