Shape changes in aroma-producing molecules determine the fragrances we detect

December 22, 2008

Shakespeare wrote "a rose by any other name would smell as sweet." But would it if the molecules that generate its fragrance were to change their shape?

That's what Dr. Kevin Ryan, Assistant Professor of Chemistry at The City College of New York (CCNY) and collaborators in the laboratory of Dr. Stuart Firestein, Professor of Biology at Columbia University, set out to investigate. Their findings, reported today in the journal "Chemistry & Biology," shed new insight into how our sense of smell works and have potential applications in the design of flavors and fragrances.

When odor-producing molecules, known as odorants, pass through the nose, they trigger intracellular changes in a subset of the approximately 400 different varieties olfactory sensory neurons (OSN) housed in the nose's internal membrane tissue, Professor Ryan explained. The unique reaction pattern produced, known as the olfactory code, is sent as a signal to the brain, which leads to perception of odors.

Professor Ryan and his team wanted to learn how these receptor cells respond when odorants change their shape. They studied the odorant octanal, an eight-carbon aldehyde that occurs in many flowers and citrus fruits. Octanal is a structurally flexible molecule that can adapt to many different shapes by rotating its chemical bonds.

The researchers designed and synthesized eight-carbon aldehydes that resembled octanal, but had their carbon chains locked by adding one additional bond. These molecules were tested on genetically engineered OSNs known to respond to octanal. This work was done in Professor Firestein's laboratory at Columbia.

The aldehyde molecules that could stretch to their greatest length triggered strong activity in the OSNs. However, those molecules whose carbon chains were constrained into a U shape blocked the receptor and left the cell unable to sense octanal.

"Conformationally constrained odorants were more selective in the number of OSNs they activated," Professor Ryan noted. "The results indicate that these odorant molecules might be able to alter fragrance mixture odors in two ways: by muting the activity of flexible odorants present in a mixture and by activating a smaller subset of OSNs than chemically related flexible odorants. This would produce a different olfactory code signature."

Olfactory receptors belong to the G-protein coupled receptor (GPCR) class of proteins, a family of molecules found in cell membranes throughout the body. Professor Ryan pointed out that half of all commercial pharmaceuticals work by interaction with proteins within this family. Thus, the findings could also have applications to GPCR drug design, as well.

Source: City College of New York

Explore further: Novel material could make plastic manufacturing more energy-efficient

Related Stories

Scientists report a new cascade reaction

November 15, 2017

Chemists from RUDN University have developed a new chemical reaction to synthesize a whole class of yet unexplored substances – diazabicyclo[3.2.1]octanes. These compounds are used in drug development. The new goal is to ...

Recommended for you

Scientists ID another possible threat to orcas: pink salmon

January 19, 2019

Over the years, scientists have identified dams, pollution and vessel noise as causes of the troubling decline of the Pacific Northwest's resident killer whales. Now, they may have found a new and more surprising culprit: ...

Targeting 'hidden pocket' for treatment of stroke and seizure

January 19, 2019

The ideal drug is one that only affects the exact cells and neurons it is designed to treat, without unwanted side effects. This concept is especially important when treating the delicate and complex human brain. Now, scientists ...

Technology near for real-time TV political fact checks

January 18, 2019

A Duke University team expects to have a product available for election year that will allow television networks to offer real-time fact checks onscreen when a politician makes a questionable claim during a speech or debate.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.