Robots show that brain activity is linked to time as well as space

November 7, 2008,

Humanoid robots have been used to show that that functional hierarchy in the brain is linked to time as well as space. Researchers from RIKEN Brain Science Institute, Japan, have created a new type of neural network model which adds to the previous literature that suggests neural activity is linked solely to spatial hierarchy within the animal brain. Details are published November 7 in the open-access journal PLoS Computational Biology.

An animal's motor control system contains a functional hierarchy, whereby small, reusable parts of movements are flexibly integrated to create various action sequences. For example, the action of drinking a cup of coffee can be broken down into a combination of small movements including the motions of reaching for a cup, grasping the cup, and bringing it to one's mouth.

Earlier studies suggested that this functional hierarchy results from an explicit spatial hierarchical structure, but this has not been seen in anatomical studies of the brain. The underlying neural mechanisms for functional hierarchy, thus, had not yet been definitively determined.

In this study, Yuichi Yamashita and Jun Tani demonstrate that even without explicit spatial hierarchical structure a, functional hierarchy can self-organize through multiple timescales in neural activity. Their model was proven viable when tested with the physical body of a humanoid robot. Results suggest that it is not only the spatial connections between neurons, but also the timescales of neural activity, that act as important mechanisms in neural systems.

Citation: Yamashita Y, Tani J (2008) Emergence of Functional Hierarchy in a Multiple Timescale Neural Network Model: A Humanoid Robot Experiment. PLoS Comput Biol 4(11): e1000220. doi:10.1371/journal.pcbi.1000220 www.ploscompbiol.org/doi/pcbi.1000220

Source: Public Library of Science

Explore further: The role neurotransmitters play in contextual preference reversals

Related Stories

Neural mechanisms of abstract learning

April 28, 2010

A new study provides intriguing insight into the way that humans approach novel situations. The research, published in the April 29 issue of the journal Neuron, reveals neural mechanisms that underlie our remarkable ability ...

Recommended for you

Solving mazes with single-molecule DNA navigators

November 16, 2018

The field of intelligent nanorobotics is based on the great promise of molecular devices with information processing capabilities. In a new study that supports the trend of DNA-based information carriers, scientists have ...

Scientists produce 3-D chemical maps of single bacteria

November 16, 2018

Scientists at the National Synchrotron Light Source II (NSLS-II)—a U.S. Department of Energy (DOE) Office of Science User Facility at DOE's Brookhaven National Laboratory—have used ultrabright x-rays to image single bacteria ...

A way to make batteries almost any shape desired

November 16, 2018

A team of researchers from Korea Advanced Institute of Science and Technology, Harvard University and Korea Research Institute of Chemical Technology has developed a way to make batteries in almost any shape that can be imagined. ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Quantum_Conundrum
1 / 5 (3) Nov 07, 2008
In this study, Yuichi Yamashita and Jun Tani demonstrate that even without explicit spatial hierarchical structure a, functional hierarchy can self-organize through multiple timescales in neural activity.


Because it was designed to do so...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.