Can genetic information be controlled by light?

October 10, 2008

Researchers at Kiel University have succeeded in showing that DNA strands differ in their light sensitivity depending on their base sequences. Their results are reported by Nina Schwalb and colleagues in the current issue of the journal Science appearing on Oct. 10, 2008.

DNA, the molecule that acts as the carrier of genetic information in all forms of life, is highly resistant against alteration by ultraviolet light, but understanding the mechanism for its photostability presents some puzzling problems. A key aspect is the interaction between the four chemical bases that make up the DNA molecule. Researchers at Kiel University have succeeded in showing that DNA strands differ in their light sensitivity depending on their base sequences. Their results are reported by Nina Schwalb and colleagues in the current issue of the journal Science appearing on October 10, 2008.

It has been known for many years that the individual bases that code the genetic information contained in DNA show a high degree of photostability, as the energy that they take up from UV radiation is immediately released again. Surprisingly, however, it is found that in DNA, which consists of many bases, those mechanisms are ineffective or only partially effective. It seems that the deactivation of UV-excited DNA molecules must instead occur by some completely different mechanisms specific to DNA, which are not yet understood. Through measurements by a variety of methods on DNA molecules with different base sequences, the research group led by Professor Friedrich Temps at the Institute of Physical Chemistry of Kiel University has now been able to confirm and clarify that assumption.

According to Professor Temps, "DNA achieves its high degree of photostability through its complex double-helix structure. The interactions between bases that are stacked one above another within a DNA strand, and the hydrogen bonds between the base pairs of the two complementary single strands in the double-helix play key roles. Through the different interactions that we have observed the DNA acts to some extent as its own sun-protection".

Nina Schwalb investigated many different base combinations in synthetically-produced DNA molecules. Using a femtosecond pulsed laser spectroscope, she measured the characteristic energy release for each combination. She was able to measure the time for which the molecules continued to fluoresce, and thus how long they stored the light energy. She found that for some base combinations these fluorescence 'lifetimes' were only about 100 femtoseconds, whereas for others they were up to a thousand times longer. A femtosecond is one millionth of a billionth of a second.

Commenting on the conclusions from her research, Nina Schwalb says: "We have investigated the photophysical properties and have found that different base combinations have widely different fluorescence lifetimes. This could lead to the development of a new diagnostic method whereby laser light could be used to directly recognise certain genetic sequences without, for example, having to mark the DNA with dyes as in the method used at present".

One might also envisage linking the photophysical properties to genetic characteristics. When these mechanisms are better understood, it might in the long term become possible to repair gene mutations using laser radiation.

"In the field of nano-electronics it has already been shown that synthetically produced DNA can be used as 'nano-wires'. On the basis of the different reaction times of the molecules it might one day become possible to use laser pulses to 'switch' specific molecules. It might even be possible under some circumstances to make transistors from DNA that would work through the hydrogen bonds," explains Professor Temps.

Source: Kiel University, Germany

Explore further: Cloning thousands of genes for massive protein libraries

Related Stories

Cloning thousands of genes for massive protein libraries

June 26, 2017

Discovering the function of a gene requires cloning a DNA sequence and expressing it. Until now, this was performed on a one-gene-at-a-time basis, causing a bottleneck. Scientists at Rutgers University-New Brunswick in collaboration ...

Researchers find new mechanism for genome regulation

June 21, 2017

The same mechanisms that quickly separate mixtures of oil and water are at play when controlling the organization in an unusual part of our DNA called heterochromatin, according to a new study by researchers at the Department ...

Illuminating a better way to calculate excitation energy

June 20, 2017

Glow sticks, like those brandished by trick-or-treaters and partygoers, light up due to excited electrons of the molecules in the contained fluorescent dye. Electrons accept the exciting energy from a chemical reaction that ...

Recommended for you

Galaxy NGC 1132 has a disturbed hot halo, study finds

June 27, 2017

(Phys.org)—A new study recently published on arXiv.org reveals that the fossil group galaxy NGC 1132 (also known as UGC 2359) has a disturbed and asymmetrical hot halo. The findings provide new insights into the formation ...

Scientists illuminate structures vital to virus replication

June 27, 2017

In the fight against the viruses that invade everyday life, seeing and understanding the battleground is essential. Scientists at the Morgridge Institute for Research have, for the first time, imaged molecular structures ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.