Microscopic version of the CT scan reveals secrets of bone formation

September 29, 2008
A juvenile snail shell of Biomphalaria glabrata, 4 weeks after hatching with a shell diameter of 3 mm. Credit: American Chemical Society

A new version of the computerized tomography (CT) scan, which revolutionized medical imaging during the last 25 years, is giving scientists precious new information about how Mother Nature forms shells, bones, and other hard structures in animals ranging from guppies to mice. That information on "biomineralization" could form a knowledge base for understanding bone loss in humans and even snaring the Holy Grail of regenerative medicine — discovering how newts, starfish and other animals regrow amputated body parts.

Those are the observations in a new overview of the field scheduled for the November 12 issue of ACS' Chemical Reviews. In the article, Matthias Epple and Frank Neues describe ongoing research in which scientists use X-ray microcomputer tomography to study biomineralization, the process in which animals form bones, shells, and other hard structures. Microcomputer tomography is the high-resolution version of conventional CT. Like a CT microscope, it constructs three-dimensional images of structures in bones and shells too small for viewing with regular CT.

The article provides a sweeping overview of current research involving X-ray microcomputer tomography, and the implications for medicine, design of new materials, and other fields. "It is of interest in modern materials science to synthetically mimic these inorganic structures to create new coatings, materials or instruments for practical application," the article states. "We are convinced that this method will be of high future value to study the spatially different mineralization processes in mineralizing animals and plants."

Article: "X-ray Microcomputer Tomography for the Study of Biomineralized Endo- and Exoskeletons of Animals"; dx.doi.org/10.1021/cr078250m

Source: ACS

Explore further: Scientists discover spring-loaded mechanism in unusual species of trap-jaw ant

Related Stories

Recommended for you

Taming 'wild' electrons in graphene

October 23, 2017

Graphene - a one-atom-thick layer of the stuff in pencils - is a better conductor than copper and is very promising for electronic devices, but with one catch: Electrons that move through it can't be stopped.

Mountain glaciers shrinking across the West

October 22, 2017

Until recently, glaciers in the United States have been measured in two ways: placing stakes in the snow, as federal scientists have done each year since 1957 at South Cascade Glacier in Washington state; or tracking glacier ...

When words, structured data are placed on single canvas

October 22, 2017

If "ugh" is your favorite word to describe entering, amending and correcting data on the rows and columns on spreadsheets you are not alone. Coda, a new name in the document business, feels it's time for a change. This is ...

Metacognition training boosts gen chem exam scores

October 20, 2017

It's a lesson in scholastic humility: You waltz into an exam, confident that you've got a good enough grip on the class material to swing an 80 percent or so, maybe a 90 if some of the questions go your way.

Two teams independently test Tomonaga–Luttinger theory

October 20, 2017

(Phys.org)—Two teams of researchers working independently of one another have found ways to test aspects of the Tomonaga–Luttinger theory that describes interacting quantum particles in 1-D ensembles in a Tomonaga–Luttinger ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.