Chemist Discovers the Elusive Chemical Middleman That Removes Acid Rain

August 29, 2008

(PhysOrg.com) -- Researchers have discovered the middleman in the complex chemical reaction that is essential to the atmosphere's ability to break down pollutants, especially the compounds that cause acid rain. The study improves the basic understanding of the chemical removal of acid rain and will allow scientists to better model how pollutants are removed from the atmosphere and to predict potential environmental conditions.

The first identification of OH-HONO2 within this chemical reaction was performed by Marsha Lester, chair of the Department of Chemistry in the School of Arts and Sciences at the University of Pennsylvania and Joseph Francisco, professor of chemistry at Purdue University.

The molecule, speculated as the possible middleman, has eluded detection by scientists for more than 40 years. The breakthrough was provided by an improved experimental methodology that used direct spectroscopic characterization of the chemical, like an infrared fingerprint; this was the first time researchers employed a technique sensitive enough to observe the presence of the chemical. Complementary theoretical calculations performed with supercomputers validated the spectral signature of this novel molecule.

The paper, published in a special edition of the Proceedings of the National Academy of Science, showed for the first time all the steps the Earth’s atmosphere takes in oxidizing pollutants, akin to the human body’s ability to metabolize food.

"We've speculated about this unusual atmospheric species for many years, and then to actually see it and learn about its properties was very exciting," said Lester.

"The chemical details of how the atmosphere removes nitric acid have not been clear," Francisco says. "This gives us important insights into this process. Without that knowledge we really can't understand the conditions under which nitric acid is removed from the atmosphere."

An unusual aspect of the molecule helped it escape detection by scientists. The reaction involving this molecule proceeds faster as you go to lower temperatures, which is the opposite of most chemical reactions," said Lester. "The rate of reaction also changes depending on the atmospheric pressure, and most reactions don't depend on external pressure. The molecule also exhibits unusual quantum properties.”

What makes the molecule of interest to basic chemistry as well as an understanding of the environment is its two hydrogen bonds. The two bonds enable the molecule to form a six-sided ring structure. Normally weaker than covalent bonds, the two hydrogen bonds are strong enough to affect atmospheric chemistry. These bonds may tell science more about biological systems that depend on hydrogen bonds.

Provided by University of Pennsylvania

Explore further: Green functionalisation of carbon-hydrogen bonds

Related Stories

A range of substances with antitumor properties synthesized

October 16, 2017

Scientists from RUDN University have synthesized a number of new cytotoxic substances that can damage cells. The results of the study could be used in cancer therapy. The compounds were obtained by domino reaction, a successive ...

Stiff fibres spun from slime

October 17, 2017

Nature is an excellent teacher – even for material scientists. Researchers, including scientists at the Max Planck Institute of Colloids and Interfaces, have now observed a remarkable mechanism by which polymer materials ...

Art advancing science at the nanoscale

October 18, 2017

Like many other scientists, Don Ingber, M.D., Ph.D., the Founding Director of the Wyss Institute, is concerned that non-scientists have become skeptical and even fearful of his field at a time when technology can offer solutions ...

A new way to harness wasted methane

October 17, 2017

Methane gas, a vast natural resource, is often disposed of through burning, but new research by scientists at MIT could make it easier to capture this gas for use as fuel or a chemical feedstock.

Scientists analyze the chemical bonds that shape proteins

September 29, 2017

An international group of scientists including visiting foreign professor from RUDN University Kamran Makhmudov has analyzed chemical bonds in proteins based on sulfur and other elements from the 16th group of the periodic ...

Recommended for you

When words, structured data are placed on single canvas

October 22, 2017

If "ugh" is your favorite word to describe entering, amending and correcting data on the rows and columns on spreadsheets you are not alone. Coda, a new name in the document business, feels it's time for a change. This is ...

Mountain glaciers shrinking across the West

October 22, 2017

Until recently, glaciers in the United States have been measured in two ways: placing stakes in the snow, as federal scientists have done each year since 1957 at South Cascade Glacier in Washington state; or tracking glacier ...

Dawn mission extended at Ceres

October 20, 2017

NASA has authorized a second extension of the Dawn mission at Ceres, the largest object in the asteroid belt between Mars and Jupiter. During this extension, the spacecraft will descend to lower altitudes than ever before ...

Carbon coating gives biochar its garden-greening power

October 20, 2017

For more than 100 years, biochar, a carbon-rich, charcoal-like substance made from oxygen-deprived plant or other organic matter, has both delighted and puzzled scientists. As a soil additive, biochar can store carbon and ...

Metacognition training boosts gen chem exam scores

October 20, 2017

It's a lesson in scholastic humility: You waltz into an exam, confident that you've got a good enough grip on the class material to swing an 80 percent or so, maybe a 90 if some of the questions go your way.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.