Researchers find dual-use sexual attraction and population-control chemicals in nematodes

July 31, 2008,

Organisms ranging from humans to plants to the lowliest bacterium use molecules to communicate. Some chemicals trigger the various stages of an organism's development, and still others are used to attract members of the opposite sex. Researchers at the California Institute of Technology have now found a rare kind of signaling molecule in the nematode worm Caenorhabditis elegans that serves a dual purpose, working as both a population-control mechanism and a sexual attractant.

The discovery, published online July 23 in the journal Nature, could lead to new ways to control parasitic nematodes, which affect the health of more than a billion people and each year cause billions of dollars in crop damage.

Caenorhabditis elegans worms have long been a favorite model organism among developmental biologists, in part because of their small size (1 mm long), simple nervous system, and ease of care. The normally soil-dwelling worms are almost always hermaphrodites--females that are capable of making sperm, with which they can fertilize their own eggs. About one in every 1000 worms is a true male.

Researchers studying C. elegans had long noted that hermaphroditic worms, left to wander about in a culture plate, will secrete a chemical that strongly attracts males. When males are exposed to the chemical, dubbed "worm sweat" by C. elegans researchers, "males will act as if their desired mate is near, and start blindly feeling around to locate it," says molecular geneticist Paul W. Sternberg, the Thomas Hunt Morgan Professor of Biology at Caltech and an investigator with the Howard Hughes Medical Institute.

Jagan Srinivasan, a postdoctoral research scholar at Caltech, Sternberg, and his colleagues at the University of Florida, the United States Department of Agriculture, and Cornell University, assayed and analyzed worm sweat and found that it consisted of a blend of three related chemicals, called ascarosides. The chemicals looked suspiciously like another compound previously known to be involved in triggering an alternative developmental state in the nematodes, a spore-like condition called the "dauer stage"--from the German word for "enduring"--that represents a form of worm population control.

"When worm larvae are stressed out and hungry and crowded," Sternberg says, "they enter the dauer stage." In this alternate state, the worm larvae can withstand harsh environmental conditions. "The dauer stage is important because it is the infective stage in a lot of parasitic nematodes," he says.

The scientists found that purified samples of the chemicals, dubbed ascr#2, ascr#3, and ascr#4, induced sexual excitement among males, but only when the chemicals were combined, and only when presented to the worms in very dilute form. At higher concentrations, 100 to 1000 times stronger, males were repelled, sexual reproduction ceased, and existing worm larvae entered their hibernating stage.

"This is the first glimpse into the chemical code that nematodes are using to communicate," says Sternberg. Adds Srinivasan, "It is the first time that two distinct and different life history traits--reproduction and developmental arrest--have been found to be regulated by the same family of molecules, suggesting a link, which we had not suspected, between the corresponding pathways."

The discovery offers hope for a solution to a global nematode scourge. Hundreds of thousands of nematode species occupy the earth, and many are pests or parasites whose activities cause disease or economic hardship, with damage amounting to billions of dollars per year. For example, hookworm, a parasitic nematode that lives in the small intestine of humans, is believed to infect one billion people worldwide and in developing countries is the leading cause of illnesses in babies, children, pregnant women, and malnourished individuals; the soybean cyst nematode, which attacks the roots of soybean plants, causes half a billion dollars worth of crop loss each year in the United States alone.

By decoding some of the signals that nematodes use to communicate, scientists may be able to offer new strategies to control the pests. One option could be to create chemical attractants derived from pheromones, similar to the pheromone-based substances that now are used to lure fruit flies and other bugs into traps. Alternatively, Sternberg says, compounds could be developed "that interfere with the chemical signaling involved in the reproductive process," thereby preventing the organism from multiplying.

Source: California Institute of Technology

Explore further: Salk scientists advance ultrasound technology for neurological therapy

Related Stories

Worm pheromones trigger plant defenses, study finds

July 24, 2015

Plants can sense parasitic roundworms in the soil by picking up on their chemical signals, a team of researchers at the Boyce Thompson Institute for Plant Research (BTI), on the Cornell University campus, has found.

'Worm speak' uses chemicals to communicate

January 26, 2012

(PhysOrg.com) -- A species of small, transparent roundworms have a highly evolved language in which they combine chemical fragments to create precise molecular messages that control social behavior, reports a new study from ...

Compounds shared by all worms may lead to parasite treatment

April 17, 2012

(Phys.org) -- Worms are important decomposers in soil and are great for fishing, but in humans, the slimy wrigglers spell trouble. Hookworms, whipworms, Ascaris, Guinea worms and trichina worms are just a few parasitic nematodes ...

Pinhead-size worms + robot = new antibiotics

August 5, 2009

In an advance that could help ease the antibiotic drought, scientists in Massachusetts are describing successful use of a test that enlists pinhead-sized worms in efforts to discover badly needed new antibiotics. Their study ...

Recommended for you

Scientists ID another possible threat to orcas: pink salmon

January 19, 2019

Over the years, scientists have identified dams, pollution and vessel noise as causes of the troubling decline of the Pacific Northwest's resident killer whales. Now, they may have found a new and more surprising culprit: ...

Targeting 'hidden pocket' for treatment of stroke and seizure

January 19, 2019

The ideal drug is one that only affects the exact cells and neurons it is designed to treat, without unwanted side effects. This concept is especially important when treating the delicate and complex human brain. Now, scientists ...

Technology near for real-time TV political fact checks

January 18, 2019

A Duke University team expects to have a product available for election year that will allow television networks to offer real-time fact checks onscreen when a politician makes a questionable claim during a speech or debate.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.