Evolutionary phenomenon in mice may explain human infertility

January 23, 2008

Scientists at the University of Liverpool have found that field mice have evolved a unique way of ensuring faster fertilisation, a phenomenon which could explain some cases of infertility in humans.

The team, in collaboration with Charles University, Prague, found that field mice sacrifice some of their immunity protection in favour of a more rapid fertilisation process. This occurs due to the absence of a protein, called CD46. Present in both animals and humans, it helps protect the body’s cells from attack by its immune system. Over time, field mice have lost the ability to produce this protein, resulting in instability of a cap-like structure, called the acrosome, present over the head of the sperm.

This instability allows the acrosome to be shed from the sperm head to create a new surface essential for sperm to be capable of fusing with an egg. This is a natural process that can take days to occur in humans, but field mice have developed a way in which this can occur rapidly.

Immunologist, Professor Peter Johnson, explains: “Field mice have traded the production of an immunologically important protein in favour of this faster fertilization process in order to compete with other mice more successfully. Female mice produce multiple eggs and if there are a lot of male mice competing for her, then it is an advantage to an individual mouse for its sperm to react quickly in order to beat other male competitors to fertilisation.”

“By improving our understanding of defects in CD46 we may improve treatments for infertility in men. Humans normally produce a single egg each month and there is no evolutionary necessity to develop rapid sperm reaction to egg fertilisation. The process is therefore much slower and so any defect in CD46 could result in sperm being destabilised too early.

“Interestingly the rapid reaction caused in mice is similar to that in IVF treatment in humans where the acronome is artificially expelled from the sperm head before it is introduced to the egg to speed up the fertilisation process. Field mice appear to do this naturally.”

Source: University of Liverpool

Explore further: New insight into how brain cells die in Alzheimer's disease and frontotemporal dementia

Related Stories

Optogenetics makes sterile mice fertile again

January 20, 2015

Scientists from the Center of Advanced European Studies and Research (caesar) in Bonn, an Institute of the Max Planck Society, have succeeded for the first time in controlling the function of sperm by optogenetics. They inserted ...

Females fight back in sperm wars

October 17, 2013

(Phys.org) —Females exposed to a risk of sperm competition have been found to produce more defensive ova compared to the eggs of females reared under no risk of sperm competition, according to researchers at The University ...

Recommended for you

When words, structured data are placed on single canvas

October 22, 2017

If "ugh" is your favorite word to describe entering, amending and correcting data on the rows and columns on spreadsheets you are not alone. Coda, a new name in the document business, feels it's time for a change. This is ...

Mountain glaciers shrinking across the West

October 22, 2017

Until recently, glaciers in the United States have been measured in two ways: placing stakes in the snow, as federal scientists have done each year since 1957 at South Cascade Glacier in Washington state; or tracking glacier ...

Dawn mission extended at Ceres

October 20, 2017

NASA has authorized a second extension of the Dawn mission at Ceres, the largest object in the asteroid belt between Mars and Jupiter. During this extension, the spacecraft will descend to lower altitudes than ever before ...

Metacognition training boosts gen chem exam scores

October 20, 2017

It's a lesson in scholastic humility: You waltz into an exam, confident that you've got a good enough grip on the class material to swing an 80 percent or so, maybe a 90 if some of the questions go your way.

Carbon coating gives biochar its garden-greening power

October 20, 2017

For more than 100 years, biochar, a carbon-rich, charcoal-like substance made from oxygen-deprived plant or other organic matter, has both delighted and puzzled scientists. As a soil additive, biochar can store carbon and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.