Insomniac fish shed light on the molecular basis of sleep disorders

October 16, 2007
Insomniac fish shed light on the molecular basis of sleep disorders
Infrared picture of an adult zebrafish (Danio rerio) sleeping at the bottom of its aquarium. Credit: Mignot et al.

Sleep disorders are common and poorly understood. In humans, narcolepsy is a sleep disorder associated with sleepiness, abnormal dreaming, paralysis and insomnia. Neuropeptides called hypocretins are implicated in this disorder.

A new study by Yokogawa and colleagues at Stanford University now reveals that fish, like mammals, sleep, and their hypocretin receptor plays an important role. Their work is published online this week in the open-access journal PLoS Biology.

The authors first generated a mutant fish in which the hypocretin system was disrupted. Intriguingly, this first fish sleep mutant did not display sleepiness or paralysis but showed a 30% reduction of its sleep time at night and a 60% decrease in sleep bout length compared with non-mutant fish.

They also studied the relationships between the hypocretin system and other sleep regulatory brain systems in zebrafish and found differences in expression patterns in the brain that may explain the differences in behavioral effects. Their study illustrates how a sleep regulatory system may have evolved across vertebrate phylogeny. Zebrafish, a powerful genetic model that has the advantage of transparency to study neuronal networks in vivo, can be used to study sleep.

Citation: Yokogawa T, Marin W, Faraco J, PeĀ“zeron G, Appelbaum L, et al. (2007) Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLoS Biol 5(10): e277. doi:10.1371/journal.pbio.0050277

Source: Public Library of Science

Explore further: Researchers find new sleep-promoting brain cells

Related Stories

Researchers find new sleep-promoting brain cells

September 1, 2017

Johns Hopkins researchers report the unexpected presence of a type of neuron in the brains of mice that appears to play a central role in promoting sleep by turning 'off' wake-promoting neurons. The newly identified brain ...

Recommended for you

Heavy nitrogen molecules reveal planetary-scale tug-of-war

November 17, 2017

Nature whispers its stories in a faint molecular language, and Rice University scientist Laurence Yeung and colleagues can finally tell one of those stories this week, thanks to a one-of-a-kind instrument that allowed them ...

Carefully crafted light pulses control neuron activity

November 17, 2017

Specially tailored, ultrafast pulses of light can trigger neurons to fire and could one day help patients with light-sensitive circadian or mood problems, according to a new study in mice at the University of Illinois.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.