Scientists identify prion's infectious secret

May 9, 2007

Researchers have known for decades that certain neurodegenerative diseases, such as mad cow disease or its human equivalent, Cruetzfeldt-Jakob disease, result from a kind of infectious protein called a prion. Remarkably, in recent years researchers also have discovered non-pathogenic prions that play beneficial roles in biology, and prions even may act as essential elements in learning and memory.

But although prions have received a great deal of scrutiny, scientists still don’t understand many of the most fundamental mechanisms of how prions form, replicate and cross from one species to another.

Now, through studying non-toxic yeast prions, scientists at Whitehead Institute have discovered small but critical regions within prions that determine much of their behavior.

"These findings provide a new framework for us to begin exploring properties of prion biology that, up until now, have proven difficult to investigate," says Whitehead Member and MIT Professor of Biology Susan Lindquist, senior author on the paper, which will appear in the May 9 online issue of Nature.

Proteins are the cell’s workhorses, and they need to fold into complex and precise shapes to do their jobs. Prions are proteins that start out normally, but then at some point misfold—rather like an origami swan that comes out looking and acting instead like a vulture.

But prions have another characteristic that enables them to wreak havoc. They recruit other, properly folded proteins into misforming along with them, a process Lindquist calls a "conformational cascade." In many organisms, this conformational cascade creates long fibers called amyloids. (The brains of animals that have died from prion infections are literally packed with amyloid clumps.)

In order to glean insights into the mechanics that enable amyloid formation, Peter Tessier, a postdoctoral scientist in Lindquist’s lab, used peptide arrays—glass slides covered with thousands of tiny protein fragments. Traditionally, these arrays are used for finding binding sites within well-behaved proteins. Here, Tessier designed the arrays so that he could observe protein folding and amyloid formation in real time.

Tessier covered the array with peptides from baker’s yeast and then added prion protein to the array, also from the same yeast species. He found that a small cluster of peptides recruited the prion proteins to misfold into an amyloid structure. This region of the protein, which Tessier called a "recognition element," constitutes about 10 percent of the prion. Tessier repeated this experiment with peptides and a prion taken from pathogenic fungi. The results were the same.

Both prions also maintained a rigid species barrier. The baker’s yeast prion could not recruit peptides from the pathogenic fungi cells, and vice versa.

To further verify these results, Tessier accessed a synthetic yeast prion, one that another research group had assembled from pieces of both the baker’s yeast and the pathogenic fungi prion. Earlier studies had shown that this synthetic prion could cross the species barrier but did not identify the mechanism. Tessier found that this synthetic prion contained two recognition elements, one for baker’s yeast and one for pathogenic fungi. When the prion was placed with peptide fragments from baker’s yeast, the baker’s yeast recognition element was activated, and likewise for the pathogenic fungi.

Even more striking, Tessier could activate different recognition elements by manipulating environmental conditions, such as temperature. For example, when he conducted the experiment at 4 degrees Celsius, the baker’s yeast recognition element switched on. At 37 degrees Celsius, the pathogenic fungi element was activated. In other words, temperature alone could dictate which yeast species the prion could infect. Additionally, the prion’s behavior could be altered by subtle alterations in the recognition element’s amino acid sequence.

While this prion is a laboratory construct not found in nature, these findings provide researchers with a new way to approach old questions, such as why some prion diseases can jump from one species to another but others can’t. Tessier and Lindquist say it is likely that natural prions contain more than one recognition element, and recognition elements can slide into a neighboring region. Many external factors can determine which recognition element is activated, in turn influencing the downstream behavior of the prion.

"These findings are remarkable for two reasons," says Lindquist, who is also an investigator for Howard Hughes Medical Institute. "For one thing, this is the first time that these peptide arrays have been used to study protein folding. We’ve taken this platform to a whole new level. Also, we’ve seen just one small part of this prion inducing proteins to fold. This is an entirely new concept."

Earlier research from the Lindquist lab, published in Nature in 2005, identified the amino acid regions where prions connect with one another to form amyloids. Those interaction regions turn out to be the same regions Tessier identified as recognition elements—
further confirmation that these regions are key to prion activity.

Tessier and his colleagues plan to further investigate this process in mammalian prions, such as those responsible for mad cow and Cruetzfeldt-Jakob diseases, as well as in other non-prion proteins that can also form amyloid structures.

Source: Whitehead Institute for Biomedical Research

Explore further: Protective prion keeps yeast cells from going it alone

Related Stories

Protective prion keeps yeast cells from going it alone

March 28, 2013

Most commonly associated with such maladies as "mad cow disease" and Creutzfeldt-Jakob disease, prions are increasingly recognized for their ability to induce potentially beneficial traits in a variety of organisms, yeast ...

Cellular stress can induce yeast to promote prion formation

July 23, 2011

It's a chicken and egg question. Where do the infectious protein particles called prions come from? Essentially clumps of misfolded proteins, prions cause neurodegenerative disorders, such as mad cow/Creutzfeld-Jakob disease, ...

Provocative prions may protect yeast cells from stress

January 23, 2017

Prions have a notorious reputation. They cause neurodegenerative disease, namely mad cow/Creutzfeld-Jakob disease. And the way these protein particles propagate—getting other proteins to join the pile—can seem insidious.

New yeast prion helps cells survive

April 23, 2012

One of the greatest mysterious in cellular biology has been given a new twist thanks to findings reported in Science. Researchers at the RIKEN Brain Science Institute show that prions, proteins that transmit heritable information ...

Recommended for you

California to 'whipsaw' between drought, floods: study

April 23, 2018

California will zigzag between droughts and floods which will become more intense and more frequent in the coming decades unless global emissions of planet-warming greenhouse gases are checked, researchers said Monday.

Researchers investigate 'why clothes don't fall apart'

April 23, 2018

Cotton thread is made of many tiny fibers, each just 2-3 cm long, yet when spun together the fibers are capable of transmitting tension over indefinitely long distances. From a physics perspective, how threads and yarns transmit ...

Did last ice age affect breastfeeding in Native Americans?

April 23, 2018

The critical role that breast feeding plays in infant survival may have led, during the last ice age, to a common genetic mutation in East Asians and Native Americans that also, surprisingly, affects the shape of their teeth.

Swirling liquids work similarly to bitcoin

April 23, 2018

Fluid dynamics is not something that typically comes to mind when thinking about bitcoin. But for one Stanford physicist, the connection is as simple as stirring your coffee.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.