Researchers shed light on diet of early human ancestors

May 2, 2007
Researchers shed light on diet of early human ancestors
African mole rats eat a diet rich in bulbs. Photo by Justin Yeakel

Eight years ago, the field of anthropology was rocked by isotopic evidence that suggested one-third of the diet of early human ancestors consisted of grasses and sedges, or the tissue of animals that ate such plants. The news puzzled scientists, who were unable to reconcile the results with what they knew about the teeth of human ancestors who lived more than 2 million years ago.

However, an experiment by a team of researchers at the University of California, Santa Cruz, suggests that consumption of bulbs and other underground parts of plants, rather than grasses, produced the puzzling isotopic evidence. They report their results in a paper titled "The Isotopic Ecology of African Mole Rats Informs Hypotheses on the Evolution of Human Diet," which appears in the current online issue of the Proceedings of the Royal Society B: Biological Sciences.

The flat, thickly enameled molars of early humans have led scientists to infer that their diet consisted primarily of hard, brittle foods, such as seeds. But in light of recent findings, researchers speculated that a diet of corms, bulbs, rhizomes, and tubers of plants that use a form of photosynthesis that produces the same isotopic signature as grasses and sedges, could resolve the conundrum.

The UCSC team tested the hypothesis by analyzing stable carbon and oxygen isotopes of the bone and tooth enamel of African mole rats, small tunneling rodents that eat primarily corms, bulbs, rhizomes, and tubers, otherwise known as plant underground storage organs (USOs). The team also analyzed the fossil remains of mole rats recovered from the same locations where Australopithecus africanus and Paranthropus robustus were discovered and found sufficient overlap between the isotopic signatures to support their contention that early human ancestors, like African mole rats, ate a diet rich in USOs.

"This study certainly adds to the body of evidence that the diet of early hominins included bulbs and corms, and possibly tubers," said Nathaniel J. Dominy, assistant professor of anthropology, who was joined in the project by Paul L. Koch, professor of Earth and planetary sciences; lead author Justin D. Yeakel, a Ph.D. candidate in anthropology; and Nigel C. Bennett, professor of zoology at the University of Pretoria, South Africa.

The ratios of carbon and oxygen isotopes reveal clues to both the dietary proclivities of animals and aspects of the environment they inhabit. "By comparing the isotopic results of modern animals with known diets to fossil species, we can begin to infer the foraging ecologies of extinct populations of animals," said Yeakel.

Early humans would have encountered little competition for underground plant foods, noted Dominy. "African mole rats are small animals that forage mostly by luck, whereas bush pigs are largely nocturnal," he said. "Our early human ancestors had the advantage of a relatively large brain to help recognize specific plants and to make simple tools for extracting USOs from the ground." Importantly, he noted, the metabolic costs of a large brain would have been nourished by a diet of USOs, which are rich in carbohydrates.

The findings appear to resolve the conundrum posed by the grasses and sedges hypothesis. "The classic way to infer diet is to look at the teeth because form follows function. Hominins had teeth like ours, which were designed to eat something really, really hard, like small seeds, not tough grasses or raw meat," said Dominy. "Mechanically, our teeth are poorly suited for chewing such tough foods." Adding to the consternation was a lack of evidence of habitual meat consumption more than 1.9 million years ago.

Dominy's team's findings also provide significant new information about the diet of early humans, which is central to understanding human evolution. "We don't know exactly what hominins ate, but diet controls everything--locomotion, social organization, and reproduction," said Dominy. "Something about our ancestors' diet shifted to favor them becoming bipedal and increasingly brainy. No other organism on the planet evolved that way."

Source: UC Santa Cruz

Explore further: Researchers find biomarker in deciduous teeth for establishing the age of weaning

Related Stories

The giant sloth megatherium was a vegetarian

April 18, 2017

Together with an international team, Senckenberg scientists examined the diet of the extinct Giant Sloth Megatherium. Based on analyses of the collagen in the fossil bones, the researchers concluded in their study, which ...

Hair strands could reveal lifestyle secrets of criminals

April 4, 2017

Hair fiber analysis, a forensic crime tool with a questionable past, could soon have a brighter future thanks to the development of a more refined scientific technique that could reveal much about a person's lifestyle. Scientists ...

Saiga antelopes much more flexible than originally thought

March 23, 2017

Senckenberg scientists have discovered that the Saiga Antelope, which is currently threatened with extinction, used to be much more flexible in its habitat and food choices in the past than previously assumed. Based on carbon ...

Recommended for you

Biofilms—the eradication has begun

June 22, 2017

Have you ever heard of biofilms? They are slimy, glue-like membranes that are produced by microbes, like bacteria and fungi, in order to colonize surfaces. They can grow on animal and plant tissues, and even inside the human ...

UN says world population will reach 9.8 billion in 2050

June 22, 2017

India's population is expected to surpass China's in about seven years and Nigeria is projected to overtake the United States and become the third most populous country in the world shortly before 2050, a U.N. report said ...

Problem of wheeled suitcases wobbling explained

June 21, 2017

(Phys.org)—A team of researchers at Universite Paris-Diderot has uncovered the reason for wobbling of wheeled suitcases. In their paper published in Proceedings of the Royal Society A, the group explains the physics behind ...

Chemists create 3-D printed graphene foam

June 21, 2017

Nanotechnologists from Rice University and China's Tianjin University have used 3-D laser printing to fabricate centimeter-sized objects of atomically thin graphene.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.