Biologists prove critical step in membrane fusion

April 17, 2007

Cells constantly swap cargo bound in vesicles, miniscule membrane-enclosed packages of proteins and other chemicals. Before the swap can take place, the vesicle membrane must fuse with another membrane, creating channels packages can pass through.

This process, known as membrane fusion, is fundamental to health and disease. It occurs at fertilization and is particularly critical to keep hormones circulating and brain cells firing. Membrane fusion is also how HIV and other viruses infect cells.

But membrane fusion occurs in less than a millisecond, making it difficult to see precisely how it unfolds. Now Brown University biologist Gary Wessel and his laboratory team have seen and recorded a critical step in the process in a live cell.

Researchers in the Wessel lab are experts in fertilization; they used sea urchin eggs to study membrane fusion. In urchin eggs, thousands of membrane-bound vesicles are attached to the plasma membrane. Within seconds after fertilization, the contents of these vesicles are rapidly released. Previous research has shown that special proteins kept these vesicles tethered to the egg’s membrane. What about the membranes? What do they look like before vesicle cargo is released?

Wessel and his collaborators discovered that the membranes of the egg and the vesicles are hemifused – a state where the membranes are shared but the contents remain separate. Using fluorescent dyes and a high-resolution microscope, the researchers show that hemifusion is surprisingly stable in live cells.

"The novelty of these results is that a live cell can maintain a hemifused state for hours, days, even months," said Julian Wong, a postdoctoral research associate in the Wessel lab and the first author of the journal article in Developmental Cell. "When using the right cell – the sea urchin egg – the phenomenon is observable."

"What we’ve found here with membrane fusion is that everything is set and ready for it to occur, to the point of sharing membranes," Wessel said. "So all that is needed is a puff of calcium from within the cell and fusion is complete. The process is quick because of hemifusion – the vesicles are right there and ready to go."

Wong and Wessel said that their findings might help scientists find new ways to deliver drugs to cells. If membrane-bound drugs can be induced to hemifuse with target cells – rather than fully fuse – there is the potential to control the timing of drug delivery.

Source: Brown University

Explore further: Role of protein in pancreatic secretion suggests potential method for treating diabetes

Related Stories

How neurons talk to each other

September 22, 2016

Neurons are connected to each other through synapses, sites where signals are transmitted in the form of chemical messengers. Reinhard Jahn, Director at the Max Planck Institute for Biophysical Chemistry in Göttingen, has ...

Membrane fusion a mystery no more

January 24, 2012

The many factors that contribute to how cells communicate and function at the most basic level are still not fully understood, but researchers at Baylor College of Medicine have uncovered a mechanism that helps explain how ...

Fusion in the fast lane

October 19, 2006

Using fast digital imaging, scientists from the Max Planck Institute of Colloids and Interfaces in Potsdam, Germany, together with researchers from College de France, have succeeded in developing two different protocols by ...

Recommended for you

Freeze-dried food and 1 bathroom: 6 simulate Mars in dome

January 20, 2017

Crammed into a dome with one bathroom, six scientists will spend eight months munching on mostly freeze-dried foods—with a rare treat of Spam—and have only their small sleeping quarters to retreat to for solace.

Scientists develop first catalysed reaction using iron salts

January 20, 2017

Scientists at the University of Huddersfield have developed a new chemical reaction that is catalysed using simple iron salts – an inexpensive, abundant and sustainable alternative to costlier and scarcer metals. The research ...

Image: Wavemaker moon Daphnis

January 20, 2017

The wavemaker moon, Daphnis, is featured in this view, taken as NASA's Cassini spacecraft made one of its ring-grazing passes over the outer edges of Saturn's rings on Jan. 16, 2017. This is the closest view of the small ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.