Titanium dioxide -- It slices, it dices ...

March 30, 2007
Titanium dioxide -- It slices, it dices ...
Illustration of the cleavage of proteins near a titanium dioxide surface: when illuminated with ultraviolet light, hydroxyl radicals are formed in water near the semiconductor's surface and cut proteins at the location of the amino acid proline. Credit: NIST

Chemists from the National Institute of Standards and Technology and Arizona State University have proposed an elegantly simple technique for cleaving proteins into convenient pieces for analysis. The prototype sample preparation method, detailed recently in Analytical Chemistry, uses ultraviolet light and titanium dioxide and could be ideal for new microfluidic “lab-on-a-chip” devices designed to rapidly analyze minute amount of biological samples.

Because most proteins are very large, complex molecules made up of hundreds or thousands of amino acids, they usually must be cut up into more manageable pieces for analysis. Today, this most commonly is done by using special enzymes called “proteases” that sever the chains at well-known locations. The protease trypsin, for example, cuts proteins at the locations of the amino acids lysine and arginine.

Analyzing the residual fragments can identify the original protein. But enzymes are notoriously fussy, demanding fairly tight control of temperature and acidity, and the enzymatic cutting process can be time-consuming, from a matter of hours to days.

For a “radically” different approach, the NIST group turned to a semiconductor material, titanium dioxide. Titanium dioxide is a photocatalyst—when exposed to ultraviolet light its surface becomes highly oxidizing, converting nearby water molecules into hydroxyl radicals, a short-lived, highly reactive chemical species. In the NIST experiments, titanium dioxide coatings were applied to a variety of typical microanalysis devices, including microfluidic channels and silica beads in a microflow reactor. Shining a strong UV light on the area, in the presence of a protein solution, creates a small “cleavage zone” of hydroxyl radicals that rapidly cut nearby proteins at the locations of the amino acid proline.

Although development work remains to be done, according to the researchers, the NIST photocatalysis technique offers several advantages over conventional enzyme cleavage of proteins. It’s not particularly sensitive to temperature or acidity, and needs no additional reagents other than dissolved oxygen in the solution. It’s a simple arrangement, easy to incorporate into a wide range of instruments and devices, and titanium dioxide, an inorganic material, will last virtually forever in a broad range of conditions—enzymes have to be treated carefully and stored in temperature-controlled environments. The target amino acid, proline, is relatively sparse in most proteins, but it’s found at key locations, such as sharp turns in the molecule, that aid analysis. And it’s fast—in trials with the protein angiotensin I, the team obtained detectable cleavage patterns in as little as 10 seconds.

Citation: B.J. Jones, M.J. Vergne, D.M. Bunk, L.E. Locascio and M.A. Hayes. Cleavage of peptides and proteins using light-generated radicals from titanium dioxide. Anal. Chem. 2007, 79, 1327-1332.

Source: National Institute of Standards and Technology

Explore further: Electrochemistry flushes out antibiotic-resistant proteins

Related Stories

Electrochemistry flushes out antibiotic-resistant proteins

February 1, 2018

EPFL scientists, working in association with Valais Hospital in Sion and Fudan University in Shanghai, have developed a method for analyzing bacteria that – for the first time ever – lets doctors quickly see exactly which ...

Researchers devise a new way of producing hydrogen fuel

September 4, 2017

A U.S.-based team of researchers including MIPT scientists has assembled a nanoscale biological structure capable of producing hydrogen from water using light. They inserted a photosensitive protein into nanodiscs—circular ...

Synthetic cells used to bioengineer new forms of silica

June 8, 2012

(Phys.org) -- Scientists do not fully understand how nature uses proteins to develop new materials and minerals, but learning more about the natural processes could lead to bioengineering methods such as the biological synthesis ...

Titanium dioxide nanoparticles can exacerbate colitis

July 19, 2017

Titanium dioxide, one of the most-produced nanoparticles worldwide, is being used increasingly in foodstuffs. When intestinal cells absorb titanium dioxide particles, this leads to increased inflammation and damage to the ...

Researchers 'hammer' proteins

April 17, 2007

A team of chemists, led by an ASU professor, has come up with an elegant method for cutting proteins into more manageable pieces for analysis. The method, which uses industrial fillers commonly found in paint and light, could ...

Algal protein gives boost to electrochemical water splitting

December 19, 2011

Photosynthesis is considered the 'Holy Grail' in the field of sustainable energy generation because it directly converts solar energy into storable fuel using nothing but water and carbon dioxide (CO2). Scientists have long ...

Recommended for you

Reinventing the inductor

February 21, 2018

A basic building block of modern technology, inductors are everywhere: cellphones, laptops, radios, televisions, cars. And surprisingly, they are essentially the same today as in 1831, when they were first created by English ...

New tool tells bioengineers when to build microbial teams

February 21, 2018

Researchers at Duke University have created a framework for helping bioengineers determine when to use multiple lines of cells to manufacture a product. The work could help a variety of industries that use bacteria to produce ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.