Some caterpillers just don't want to grow up

March 19, 2007

For many years, ecologists from the Centre of Environment and Hydrology (CEH) have investigated the ecology of Maculinea rebeli, a Lycaenid butterfly whose caterpillars live as parasites inside colonies of Myrmica ants, where they feed on regurgitations from the nurse ants. One of the peculiar features of this species' ecology is that only about 25% of the caterpillars complete development within one year. The rest are inactive in the first season and mature only after two years.

"The question puzzling us for some time," says Prof. Jeremy Thomas, director of the CEH in Dorset, "was to understand why so many caterpillars waste one year's time by delaying their development. From all what we know, which developmental pathway a caterpillar takes is determined early during the caterpillar's life, presumably by its mother."

An international project on the ecology of Maculinea butterflies has now brought together the CEH team with theoreticians from the universities of Würzburg and Montpellier to investigate this problem. Together they have compiled various potential adaptive explanations for the evolution of such strategies into a general and quantitative model. "The problem was not the lack of, but multitude of alternative mechanisms principally capable to explain the evolution of delayed development," Dr. Thomas Hovestadt, the project leader from Würzburg University, points out.

The scientists conclude that low added mortality and intense competition among caterpillars in the nest are a prerequisite for the evolution of delayed development, but cannot explain it on their own. In contrast, sibling competition and "segregation" – cohorts from both years do not always compete because infected ant colonies avoid re-infection in the next season – favor evolutionary stable fractions of slow developers up to 50%. However, among all arguments suggested so far, only a "priority effect" – the competitive asymmetry between last year's slow and this year's fast developing caterpillars – can explain why more than 50% of caterpillars mature in their second season.

Yet, according to the currently available data, the effect seems to be too weak to fully explain the large proportion of caterpillars delaying development. Based on a simple model expansion, the scientists predict that added benefits achieved by slow-developers after emergence would also tip the balance in favor of slow development. It is now a matter of further field and lab work to demonstrate that such benefits exist.

Source: University of Chicago

Explore further: Scientists have accidentally found the oldest ever butterfly or moth fossils

Related Stories

The hungry caterpillar: Beware your enemy's enemy's enemy

November 27, 2012

When herbivores such as caterpillars feed, plants may "call for help" by emitting volatiles, which can indirectly help defend the plants. The volatiles recruit parasitoids that infect, consume and kill the herbivores, to ...

Recommended for you

Arctic wintertime sea ice extent is among lowest on record

March 23, 2018

Sea ice in the Arctic grew to its annual maximum extent last week, and joined 2015, 2016 and 2017 as the four lowest maximum extents on record, according to scientists at the NASA-supported National Snow and Ice Data Center ...

Genome of American cockroach sequenced for the first time

March 23, 2018

A team of researchers with South China Normal University and the Chinese Academy of Sciences has for the first time sequenced the genome of the American cockroach. In their paper published in the journal Nature Communications, ...

New innovations in cell-free biotechnology

March 23, 2018

A Northwestern University-led team has developed a new way to manufacture proteins outside of a cell that could have important implications in therapeutics and biomaterials.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.